

Phibro-Tech, Inc.

October 2001
Quarterly Sampling Report and
2001 Annual Groundwater Monitoring Report
Santa Fe Springs, California

January 14, 2002

Prepared for:

Phibro-Tech, Inc. 8851 Dice Road Santa Fe Springs, California 90670

Prepared by:

CDM

18881 Von Karman Avenue, Suite 650 Irvine, California 92612

Project No.: 2279-11463-111.REP.REPT

7

January 17, 2002

Ms. Rebecca Chou California RWQCB, L.A. Region 320 West 4th Street, Suite 200 Los Angeles, CA 90013 Mr. Ron Leach USEPA, Region IX (H-4-4)
 75 Hawthorne Avenue San Francisco, CA 94105

Ms. Karen Baker Permitting Division Department of Toxic Substances Control 5796 Corporate Avenue Cypress, CA 90630

Dear Mss. Chou and Baker and Mr. Leach:

Enclosed are the October 2001 Quarterly Groundwater Monitoring Report and 2001 Annual Groundwater Monitoring Report for Phibro-Tech, Inc., Santa Fe Springs facility. The Report includes analytical results and physical measurements obtained October 16 - 18, 2001 from selected monitoring wells at Phibro-Tech. Since this Report includes portions of the RCRA Facility Investigation (USEPA Docket No. RCRA 09-89-0001), this Report will also be submitted to the EPA.

Based on a technical review by our consultant, Camp Dresser and McKee, a groundwater-monitoring program is included which was implemented beginning with the April 1991 groundwater monitoring. Additional wells and parameters changed at the request of EPA are included in this Groundwater Monitoring Report. The changes are described in the Report.

Please contact me if you have any questions or comments concerning this Report.

Sincerely,

Alonso F. Alatorre Plant Manager

Enclosure

cc: see following page

8851 DICE ROAD · SANTA FE SPRINGS, CALIFORNIA 90670 · (562) 698-8036 · FAX (562) 698-1921

grdwtrrptcoverltr

PLEASE RECYCLE

4A

-2-Quarterly Ground Water Report Ltr January 17, 2002

cc: Mark Alling (no enclosure)
Phibro-Tech, Inc.
8851 Dice Road
Santa Fe Springs, CA 90670

Steve Cohen Phibro-Tech, Inc. One Parker Plaza Fort Lee, NJ 07024

Sharon Wallin, Project Manager (no enclosure) Camp Dresser & McKee Inc. 18881 Von Karman, Suite 650 Irvine, CA 92612

Kathy San Miguel Department of Toxic Substances Control 5796 Corporate Avenue Cypress, CA 90630

Phibro-Tech, Inc.

October 2001 Quarterly Sampling Report and 2001 Annual Groundwater Monitoring Report Santa Fe Springs, California

January 14, 2002

Prepared for:

Phibro-Tech, Inc. 8851 Dice Road Santa Fe Springs, California 90670

Prepared by:

CDM

18881 Von Karman Avenue, Suite 650 Irvine, California 92612

RECEIVED

JAN 16 2002

PHIBRO-TECH

Project No.: 2279-11463-111.REP.REPT

The information contained in this document (October 2001 Quarterly Sampling Report and 2001 Annual Groundwater Monitoring Report, Phibro-Tech, Inc., Santa Fe Springs , California) dated January 14, 2002, has received appropriate technical review and approval. The activities outlined in this report were performed under the supervision of a Registered Geologist or a California Professional Engineer. The conclusions and recommendations presented represent professional judgments and are based upon findings from the investigation identified in the report and the interpretation of such data based on our experience and background. This acknowledgement is made in lieu of all warranties, either expressed or implied.

Reviewed and Approved by:

Sharon Wallin, R.G.

Project Manager

Contents

Section 1	Introduc	ction		1-1
Section 2	Monitor	ring W	ell Sampling	2-1
			ing Procedure	
		2.1.1	Organic Vapor Check	2-2
		2.1.2	Detection of Immiscible Layers	
		2.1.3	Static Water Level/Well Depth Measurement	
		2.1.4	Purge Volume Determination/Well Evacuation	
		2.1.5	Sample Collection and Handling	
	2.2	Equip	nent Decontamination Procedures	
		$2.\hat{2}.\hat{1}$	Sampling Pump/Lines Decontamination	
		2.2.2	Accessory Sampling Equipment Decontamination	
Section 3	Laborate	ory Te	sting	
Section 4	Quality	Assura	ance	4-1
			Quality Assurance	
		4.1.1	Duplicate Samples	
	•	4.1.2	Deionized Water Source Sample	
		4.1.3	Equipment Blanks	
	•	4.1.4	Travel Blanks	4-2
	•	4.1.5	Sample Control	4-2
	4.2	Labora	tory Quality Assurance	4-2
Section 5	Ground	water I	Elevation	5-1
Section 6	Ground	water (Quality	6-1
	6.1	Haloge	enated Volatile Organic Compounds	6-1
			tic Volatile Organic Compounds	
	6.3	1,4-Di	oxane	6-4
	6.4	Inorga	nic and Miscellaneous Parameters	6-4
Section 7	Statistic	al Eva	luation	7-1
	7.1	Detern	nination of Background Upper Tolerance Limit	7-1
			arison of Background and On-site Wells	
Section 8	Assessm	nent of	Quarterly Groundwater Monitoring Program Status	8-1
Section 9	Referen	ces		9-1

Appendices

Appendix A	General Analytical Detection Limits
Appendix B	Historical Sampling Results
Appendix C	Severn Trent Laboratories Analytical Reports
Appendix D	Completed COC Forms
Appendix E	Background Groundwater Concentrations, Santa Fe Springs 1999
Appendix F	Statistical Analysis
Appendix F-1	Upper Tolerance Level Calculations
Appendix F-2	Probability Plots
Appendix F-3	Shapiro-Wilk Normality Tests
Appendix F-4	Test of Variance Box Plots
Appendix F-5	Parametric ANOVA Results
Appendix F-6	Nonparametric Kruskal-Wallis/ Mann-Whitney U Test Results
Appendix G	Annual Groundwater Monitoring Report for 2001

List of Figures

Figure 2-1	Monitoring Well Location Map	2-7
Figure 5-1	Groundwater Elevation Contours – Shallow Wells, July 2001	5-3
Figure 5-2	Groundwater Elevations Contours – Deep Wells, July 2001	
Figure 6-1	TCE Concentrations – Shallow Wells, October 2001	6-7
Figure 6-2	TCE Concentrations – Deep Wells, October 2001	
Figure 6-3	Total BTEX Concentrations - Shallow Wells, October 2001	
Figure 6-4	Hexavalent Chromium Concentrations - Shallow Wells,	
C	October 2001	6-10
Figure 6-5	Hexavalent Chromium Concentration Groundwater	
	Elevation MW-04, January 1989 – October 2001	6-11
Figure 6-6	Total Chromium Concentrations - Shallow Wells, October 2001	
Figure 6-7	Total Chromium Concentration Groundwater Elevation MW-04,	
•	January 1989 – October 2001	6-13
Figure 6-8	Cadmium Concentrations - Shallow Wells, October 2001	6-14
Figure 6-9	Cadmium Concentration Groundwater Elevation MW-04,	
-	January 1989 – October 2001	6-15
Figure 6-10	Copper Concentrations - Shallow Wells, October 2001	6-16

List of Tables

Table 2-1	Groundwater Monitoring Program Summary2-8
Table 4-1	Groundwater Analytical Results – October 2001 Field
	Quality Control Sample Analytical Summary4-3
Table 5-1	October 2001 Quarterly Monitoring Well Sampling,
	Groundwater Elevation Data5-5
Table 6-1	Groundwater Analytical Results - October 2001 Volatile Organic
	Compounds (VOCs) and 1,4-Dioxane Analytical Summary6-17
Table 6-2	Metals and pH Analytical Summary, October 20016-19
Table 7-1	Percent of Total Samples in Shallow Wells Reported Above the
	Detection Limit Quarterly Data: January 1989 to October 2001
	at Phibro-Tech, Inc7-5
Table 7-2	Definition of Upper Tolerance Levels in Background Shallow Wells
	Quarterly Data: January 1989 to October 2001 at Phibro-Tech, Inc 7-6
Table 7-3	Summary of the Data Distribution for Shallow Wells Using Three
	Different Methods, Quarterly Data - January 1989 to October 2001 7-7
Гable 7-4	Comparison of Background and On-Site Shallow Wells Quarterly Data:
	January 1989 to October 2001 at Phibro-Tech, Inc

Section 1 Introduction

This report summarizes the October 2001 quarterly groundwater monitoring and sampling event at the Phibro-Tech, Inc. (PTI), Santa Fe Springs, California facility (formerly referred to as Southern California Chemical). This report presents the fourth quarter groundwater analysis for 2001. Contained herein are the results of laboratory analyses of groundwater samples and water level measurements obtained during the period of October 16 through October 18, 2001.

The purpose of this monitoring program, which began in March 1985, is to determine if compounds of concern detected in groundwater beneath the site are migrating from the facility. This is accomplished through the comparison of background or upgradient water quality and groundwater quality beneath the site. Statistically significant increases in contaminant concentrations between known areas of groundwater contamination and downgradient wells would indicate that migration is occurring. In the past, statistical analysis was performed annually and was included in the July quarterly monitoring reports. Statistical analysis is now conducted for each sampling event and is included in the corresponding monitoring report. The October 2001 statistical analysis is contained in Appendix F of this report.

To date, three types of contaminants have generally been detected in the groundwater beneath the site: soluble metals (primarily chromium and cadmium), purgeable aromatic organic compounds (toluene, ethylbenzene and total xylenes [TEX]) and purgeable halogenated organic compounds (i.e., solvents, primarily trichloroethene [TCE]). Groundwater modeling completed in January 1993, and groundwater monitoring conducted since 1985, indicates that the purgeable aromatic plume originated upgradient from the PTI facility. The distribution of TCE appears to be ubiquitous, however, somewhat elevated concentrations exist in the vicinity of Pond 1, a RCRA-regulated former surface impoundment area. Elevated concentrations of soluble metals have also been consistently detected in the vicinity of Pond 1. Soluble metal concentrations at the downgradient property line and in deeper wells, however, continue to be negligible to non-detect.

Approximately 16 years of quarterly groundwater monitoring at the PTI facility has indicated a general lack of hexavalent chromium migration. During groundwater modeling performed by CDM in 1993, a retardation factor of 50 was selected based on the observed distribution of hexavalent chromium in the groundwater. Previous data analysis indicated that the most likely basis for the relatively high (but within the range of reasonable and appropriate values) retardation factor would be the existence of reducing conditions in the saturated zone, promoting the conversion of hexavalent chromium (Cr+6) to trivalent chromium (Cr+3). Trivalent chromium, having a very low solubility in water, would tend to precipitate and sorb to the soil, limiting migration. During four quarterly sampling events conducted in 1996, additional laboratory analyses (iron and redox potential) were performed on groundwater

samples collected from wells MW-04, MW-09, and MW-14S. These additional data, along with the pH, total chromium, and hexavalent chromium data, provided a better understanding of the mechanisms controlling chromium migration in groundwater underlying the facility and supported the above hypothesis. Please refer to Section 6.4 (Chromium Fate and Transport) of the October 1996 Quarterly Sampling Report for a detailed discussion of this conclusion.

In addition to the data obtained during the October 2001 sampling event, this report contains tables listing detection limits of the parameters analyzed (Appendix A). Historical sampling results for selected analytes from January 1989 to April 2001 are presented in Appendix B. Copies of the original laboratory results are included in Appendix C. Chain-of-custody records for the October 2001 sampling are included in Appendix D. Appendix E contains background groundwater concentrations of contaminants for the Santa Fe Springs area for the year 1999. Appendix F contains the complete quarterly statistical analysis. Appendix G contains the annual groundwater monitoring report for the year 2001.

Prior to October 1993, quarterly reports have included analytical result summary tables from all previous sampling rounds. Starting with the October 1993 quarterly report, historical water quality data tables are no longer included in the report as an appendix. Please refer to Appendix B in the July 1993 Quarterly Sampling Report for a summary of historical groundwater analytical data. A summary table of selected historical results since January 1989 is provided in Appendix B of this report. Beginning with the July 2001 quarterly report, analytical results have been input into an Access database. Analytical summary tables presented in Section 6 of this report and all subsequent reports will include a summary of analytical results since July 2001.

Section 2 Monitoring Well Sampling

CDM personnel conducted groundwater sampling activities, utilizing existing on-site monitoring wells, during the period of October 16 through October 18, 2001. Field activities were performed in general accordance with the groundwater sampling protocols as outlined in Section 4.3.3 of the approved RCRA Facility Investigation (RFI) Work Plan (CDM, June 1990). Prior to the submittal of the RFI Work Plan for regulatory agency review and approval, the J.H. Kleinfelder and Associates (Kleinfelder) Quality Assurance Project Plan (QAPP, May 1988) was used as the primary groundwater sampling guidance document. Proposed deviations from the RFI Work Plan (i.e., well purging using a submersible pump and sample collection using disposable bailers) were discussed in October 1994 correspondence to the DTSC. These changes were implemented during the October 1994 and all subsequent sampling events.

Twenty-four monitoring wells exist on-site. The locations of these wells are shown on Figure 2-1. One well, MW-06A, historically has not been sampled for groundwater analysis because it is screened in the Gage Aquifer, which is unsaturated below the PTI facility. The remaining wells are screened in the Hollydale Aquifer; 16 in the upper portion and 7 in the lower portion of the aquifer.

Beginning in February 1985, Kleinfelder initiated groundwater sampling, utilizing monitoring wells MW-01 through MW-06B. Six additional wells (MW-04A and MW-07 through MW-11) were installed at the site in July 1985, thereby increasing the total number of active wells to 12. Quarterly sampling of the 12 wells was initiated in March 1986.

Commencing with the January 1989 sampling event, CDM has been responsible for all groundwater monitoring activities at the facility. Ten wells (MW-01D, MW-06D, MW-12S, MW-12D, MW-13S, MW-13D, MW-14S, MW-14D, MW-15S, and MW-15D) were installed as part of the first phase of the RFI program and were first sampled during the October 1990 sampling round.

Groundwater analysis of the 22 wells which existed during the RFI program from October 1990 to January 1991, indicated that the number of wells sampled could be reduced and yield comparable results to sampling all the wells. During sampling rounds in April, July, and October 1991, and in January 1992, 11 wells were sampled. Wells screened in the upper portion of the Hollydale Aquifer included MW-01S, MW-03, MW-04, MW-07, MW-09, MW-11, MW-14S, and MW-15S, and wells screened in the lower portion of the Hollydale Aquifer included MW-01D, MW-04A, and MW-15D.

Beginning with the April 1992 sampling round, three additional wells (MW-06B, MW-06D, and MW-16) were included in the quarterly monitoring program, bringing the total number of sampled wells to 14. A new well, MW-16, constructed in

March 1992 as part of the Phase II RFI program, was sampled for the first time during the April 1992 sampling round. The same 14 wells have been sampled during all subsequent sampling rounds. On several occasions, additional laboratory analyses have been performed and additional wells included in quarterly sampling, at the request of the United States Environmental Protection Agency (USEPA). Additional analyses and wells are noted in the comment column of Table 2-1, which summarizes the groundwater monitoring program at the site.

In April 2000, the frequency of groundwater monitoring was reduced from quarterly to semi-annually. In April 2001, as requested by the California Department of Toxic Substances Control (DTSC), quarterly sampling was re-implemented.

The 14 wells currently included in quarterly sampling are MW-01S, MW-01D, MW-03, MW-04, MW-04A, MW-06B, MW-06D, MW-07, MW-09, MW-11, MW-14S, MW-15S, MW-15D, and MW-16. Ten shallow and four deep wells are analyzed for pH, metals (cadmium [Cd], total chromium [Cr], and copper [Cu]) using EPA Method 6010A; hexavalent chromium using EPA Method 7199, and volatile organic compounds (VOCs) using EPA Method 8260. During the July and October 2001 sampling events, DTSC requested that wells MW-01S, MW-04, MW-09 and MW-11 be analyzed for 1,4-Dioxane. A detailed listing of analytical parameters per sampling event is provided in Table 2-1.

The 14 on-site wells were purged and sampled in the following order: MW-01S, MW-01D, MW-03, MW-15D, MW-15S, MW-06D, MW-06B, MW-14S, MW-04A, MW-04, MW-16, MW-09, MW-07, and MW-11.

2.1 Sampling Procedure

Field sampling was conducted in general accordance with procedures detailed in the RFI Work Plan. Sampling practices included the following: check for floating product and hydrocarbon vapors at each well; measure static water level and total depth of each well in order to calculate pre-sampling evacuation volumes; purge each well and collect a groundwater sample for laboratory analysis; decontaminate sampling equipment; and handle sample-filled containers in accordance with Section 4.3.3.5 of the RFI Work Plan.

2.1.1 Organic Vapor Check

Standard field procedures included checking the interior of each well with a photoionization detector (PID) (equipped with a 10.0 eV lamp) for the presence of organic vapors whenever the well casing was opened. With the sampling team members standing upwind of the well, the well cap was opened slightly, allowing for the insertion of the PID probe tip inside the well. Readings were monitored until they stabilized, which was usually at zero parts per million (ppm). The final reading, as well as the peak reading, was recorded in the field logbook. The cap was then removed and the well allowed to vent for a short period of time prior to measuring

the static water level. The maximum PID readings taken during the collection of water level measurements are shown in Table 5-1 in Section 5.

2.1.2 Detection of Immiscible Layers

In order to detect the presence of floating, immiscible layers on top of the groundwater surface, a clear bailer was lowered approximately one-half the length of the bailer below the surface of the water in each well. The bailer was removed from the well and its contents checked for immiscible layers or iridescence. The bailer was decontaminated and the sampling line discarded after each use. If immiscible fluids had been detected, a sample would have been collected for laboratory analysis of purgeable halocarbons and aromatics (EPA Method 8260) and total petroleum hydrocarbons (California Department of Health Services [CA DHS] Method) using a new bailer. As in all previous quarterly groundwater sampling at the PTI facility by CDM, immiscible layers were not detected during the October 2001 sampling event.

2.1.3 Static Water Level/Well Depth Measurement

On October 16, 2001, prior to the initiation of on-site well pumping, the static water level at 22 of the 24 on-site wells was measured 3 times at each well location with a decontaminated electric water level indicator (sounder) and recorded. The measurements collected in the wells were identical, therefore, there was no need to collect additional measurements or average the data of these wells. The results of these measurements are shown in Table 5-1 and discussed in Section 5. One well (MW-06A) was dry, and MW-02 was not measured due to its proximity to MW-12S. Well MW-10 was inaccessible during the water level round and was also not measured.

The water level in each well was also measured immediately prior to initiating well evacuation procedures for calculation of well purge volume. During measurement, the measuring (reference) point used was noted (i.e., the top of the steel casing), and the depth to water below the reference point was measured to the nearest 0.01 foot and recorded in the field log book. Wellhead elevation data was used with depth to water measurements to calculate groundwater elevation at each well location.

The total depth of each well sampled was also measured with the sounder to the nearest 0.1 foot. The amount of fill material in the bottom of the well was calculated from well construction data and noted in the logbook. Prior to first use, the sounder was calibrated and the meter response checked. The sounder probe and line were decontaminated after each use.

2.1.4 Purge Volume Determination/Well Evacuation

Saturated casing volume was calculated at each well by using the depth to water and bottom sounding measurements obtained immediately prior to purging, to calculate the amount (height) of the saturated well casing. The inside diameter of the casing was then measured, and the following formula applied:

Volume = π (radius²) x height

A minimum of three saturated casing volumes of water was evacuated from each well prior to collecting a groundwater sample for laboratory analysis.

During the October 2001 sampling round, all 14 of the wells currently monitored were purged using a Grundfos 2-inch diameter submersible pump, and each well was sampled using a new disposable bailer.

Field parameters were measured during well evacuation using Myron-L multimeter and Hach turbidity meter for all wells. The instruments were calibrated or field checked prior to use with standard solutions in accordance with manufacturer's directions. The meters are used to determine the stability of discharge water field parameters prior to collection of a sample for laboratory analysis.

Periodically, during well evacuation, the field parameters of the discharge water were measured and recorded in the logbook. The physical appearance of the water (turbidity, color, sediment content, etc.) was also noted and recorded. Initial field turbidity measurements generally ranged from 2 to greater than 1,000 nephelometric turbidity units (NTUs) at the start of well evacuation. At the end of well evacuation, measurements were generally less than 10 NTUs. Higher turbidity at the start of purging seems to be related to agitating the water column and resuspending material from the bottom of the well during pump installation. After a minimum of 3 saturated casing volumes of water were evacuated from each well and the field parameters stabilized (change between readings of less than 5 to 10 percent), a sample for laboratory analysis was collected.

All purge water collected from each well was contained in a 250 gallon portable tank and then discharged directly into PTI facility's wastewater treatment system.

2.1.5 Sample Collection and Handling

Groundwater samples were collected with a new disposable bailer from the approximate middle of the perforated section, and poured directly into previously labeled sample bottles. During sample collection, the bailer was carefully and gently lowered past the air/water interface to minimize agitation and aeration of water during sample collection. The sample bottles were placed inside plastic zip-lock bags and then placed immediately into an ice-cooled chest. Prior to shipment, the bottles were cushioned with bubble wrap or plastic bags to avoid breakage. Samples collected for total metals analysis were field filtered using a 0.45-micron filter. A volume of groundwater equal to 2 times the capacity of the filtering device was passed through the filter and discarded prior to filtering each sample for total dissolved metals (Cd, Cu, and Cr) analysis. Used filters were discarded after each use.

The October 2001 groundwater samples were submitted for laboratory analysis of the following parameters:

- Volatile Organic Compounds by EPA method 8260
- Metals (Cd, Cu, and Cr)
- Hexavalent Chromium (Cr+6)
- pH
- 1,4-Dioxane (Selected Samples)

Groundwater sample bottles were numbered using the following format:

PTI-MW01S-051

Where:

PTI - designates site acronym

MW01S - designates sample location number (MW = Monitoring Well)

EB - designates equipment blank sample

TB - designates travel blank sample

o51 - designates sequential sample number (per sampling event)

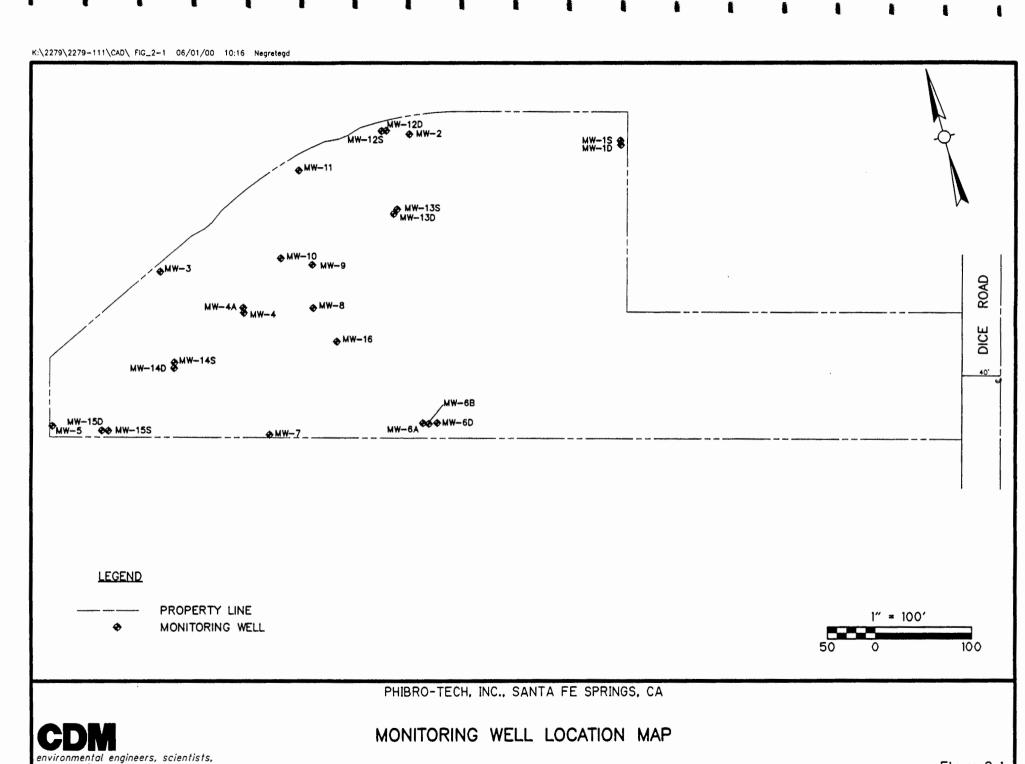
This was the 50th round of sampling conducted by CDM, however, due to a previous labeling inconsistency, a 051 sequence number was assigned to all groundwater samples collected during this round. Sample label information included date and time of sampling, CDM sample number, and analytical parameters.

Chain-of-custody forms that indicated the label information as well as the responsible person during each step of the transportation process accompanied all filled sample containers that were collected from each well. All samples were sent by courier to Severn Trent Laboratories (STL) in Santa Ana, California on the day that they were collected and a copy of the chain-of-custody form for that day was retained by CDM field personnel. Copies of completed chain-of-custody forms are included in Appendix C. The laboratory was notified at the time of delivery that one or more Cr+6 sample(s) were contained in the shipment to ensure that the samples would be analyzed within the prescribed 24-hour holding period.

2.2 Equipment Decontamination Procedures

The following sections describe the procedures utilized to decontaminate groundwater sampling equipment.

2.2.1 Sampling Pump/Lines Decontamination


The submersible pump and discharge tubing used for well purging were decontaminated to reduce the possibility of cross-contamination between monitoring wells. The first step in the decontamination procedure was to submerge the pump into a 4-foot section of 4-inch diameter PVC pipe containing a soap (Alconox, a laboratory-grade detergent) and water mixture. Then, at least five gallons of the solution were pumped through the system. The pump assembly was then submerged in another section of PVC pipe filled with tap water and at least five gallons were pumped through the system. The final decontamination step was accomplished by submerging the pump into another section of PVC pipe containing deionized (DI) water and pumping approximately five gallons of DI water through the system.

The exterior of the pump and discharge tubing was steam cleaned, as well as the exterior of the reel holding the tubing. The decontamination of the exterior pump line was performed over a stainless steel containment basin located on the groundwater sampling rig. The spent water was recovered and discharged into the facility's wastewater treatment system.

2.2.2 Accessory Sampling Equipment Decontamination

Accessory sampling equipment such as the metals filter apparatus and water level sounder were also decontaminated to minimize the possibility of cross-contamination between the monitoring wells. The filter apparatus and sounder were decontaminated first by washing in a bucket of soap and water, followed by a tap water rinse, followed by a final DI water rinse. Bailers used to test for an immiscible layer were decontaminated and reused. The bailers and nylon rope that were used to sample wells were discarded immediately after use.

planners, & management consultants

Figure 2-1

Table 2-1 PHIBRO-TECH, INC.

Groundwater Monitoring Program Summary

Sampling Event	Indicator Parameters	Trace Metals	Hexavalent Chromium	Chloride	Nitrate	Volatile Organics	Appendix IX	1,4-Dioxane	Comments
3/85	Quad	Cu & Zn	X	Х	х				Sampled wells MW-1, 2, 3, 4, 5, & 6B. Sulfide, nickel, copper and zinc requested by DOHS and RWQCB. Also Appendix III parameters and water quality parameters (see footnote).
7/85	Quad	Cd, Cr	х		х				Sampled wells MW-4A, 7, 8, 10 and 11
3/86	Quad	Cu & Zn	х	Х	х				Sampled 12 wells (MW1, 2, 3, 4, 4A, 5, 6B, 7, 8, 9, 10 & 11). Also Appendix III parameters and water quality parameters (see footnote).
7/86, 9/86, 12/86	Quad	Cd, Cr, Cu, Zn	х	Х	х	624			Sampled all 12 wells (as previous)
3/87	Quad	Cd, Cr, Cu, Zn	х	х	X	601/602	-		Sampled 11 wells, not 4A
7/87, 10/87, 2/88	Quad	Cd, Cr, Cu, Zn	х	х	Х	601/602			After July 1987, all 12 wells were sampled during each event
6/88	X (not Quad)	Cd, Cr, Cu, Zn	Х	х	x	601/602			Performed statistical analysis (t-test) on Indicator Parameters (IPs).
9/88		Cd, Cr, Cu, Zn	х	х	х	601/602			IPs & volatile organics from MW1, 2, 4A, 5, 6, 7 analyzed semi-annually in June/Dec.
1/89	Quad	Cd, Cr, Cu, Zn	х	х	х	601/602			After Jan. 1989, volatile organics analyzed for all 12 wells.
4/89		Cd, Cr, Cu, Zn	х	х	х	601/602			
7/89	Quad	Cd, Cr, Cu, Zn	х	Х	х	601/602			Performed statistical analysis of Jan. thru July 1989 data (IPs, total and hexavalent chromium).
10/89		Cd, Cr, Cu, Z n	х	Х	Х	601/602			
1/90	Quad	Cd, Cr, Cu, Zn	х	х	х	601/602			
4/90		Cd, Cr, Cu, Zn	Х	х	х	601/602			

TABLE 2-1 PHIBRO-TECH, INC. Groundwater Monitoring Program Summary (continued)

Sampling Event	Indicator Parameters	Trace Metals	Hexavalent Chromium	Chloride	Nitrate	Volatile Organics	Appendix IX	1,4-Dioxane	Comments
7/90	Quad	Cd, Cr, Cu, Zn	Х	х	х	601/602			Performed statistical analysis of Jan. 1989 data (IPs, total and hexavalent chromium).
10/90		Cd, Cr, Cu, Fe, Ni, Pb, Zn	X	Х	Х	601/602	Х		Sampled 22 wells, Appendix IX parameters analyses were performed on wells 4, 4A, 6B, 6D, 12S, 12D, 15S, 15D, plus a duplicate of 4.
1/91	Quad	Cd, Cr, Cu, Fe, Ni, Pb, Zn	х	Х	Х	601/602			Sampled 22 wells.
4/91	рН	Cd, Cr, Cu	х .			601/602			New sampling program was initiated. Sampled 11 wells including wells MW-01S, MW-01D, -03, -04, -04A, -07, -09, -11, -14S, -15S, -15D.
7/91	pН	Cd, Cr, Cu	Х			601/602			Performed annual statistical analysis.
10/91	рН	Cd, Cr, Cu	х			601/602			
1/92	pH only (all) TOC only (MW-01 &-04)	Cd, Cr, Cu	Х		Ammoni a as nitrogen (MW-01 & -04)	601/602			Ammonia & TOC analyses added at MW-01S and MW-04.
4/92	pH only TOC only (MW-01, -04, -09, -14S)	Cd, Cr, Cu-all see comments	х		Ammoni a as nitrogen (MW-01, -04, -09, -14S)	601/602	EDB (MW-04) TPH (W-16)		Sampled 14 wells including Wells MW-01S, -01D, -03, -04, -04A, -06B, -06D, -07, -09, -11, -14S, -15S, -15D, -16. Additional analysis as part of Phase II RFI; unfiltered metals on MW-04S and -14S. Pb and Ni on wells 1, 4, 14S, 15S, 16; Fe, Zn on well 16.
7/92	рН	Cd, Cr, Cu	х			601/602			Sampled 14 wells. Performed annual statistical analysis.
10/92	pН	Cd, Cr, Cu	Х			601/602			Sampled 14 wells.

TABLE 2-1 PHIBRO-TECH, INC. Groundwater Monitoring Program Summary (continued)

Sampling Event	Indicator Parameters	Trace Metals	Hexavalent Chromium	Chloride	Nitrate	Volatile Organics	Appendix lX	1,4-Dioxane	Comments
1/93, 4/93	рН	Cd, Cr, Cu	Х			8010/80 20			Sampled 14 wells.
7/93	рН	Cd, Cr, Cu	Х			8010/80 20 (TVPH, TEPH)			Sampled 15 wells. (MW-13S was added) TVPH and TEPH analysis on MW-09, 13S, and 16 only. Performed annual statistical analysis.
10/93	pΗ	Cd, Cr, Cu	X			8010/80 20			Sampled 15 wells (MW-13S not analyzed for metals and pH) TVPH & TEPH analysis on MW-04, 07, 09, 13S, and 16 only. Performed statistical analysis.
1/94, 4/94	pН	Cd, Cr, Cu	х			8010/80 20			Sampled 14 wells Performed statistical analysis.
7/94	рН	Cd, Cr, Cu	x	See comment		8010/80 20			Sampled 14 wells, chloride and sulfate analyses on MW-04, MW-09, MW-14S, MW-15S, MW-15D, and MW-16. Performed statistical analysis
10/94, 1/95, 4/95, 7/95, 10/95	pΗ	Cd, Cr, Cu	х ·			8010/80 20			Sampled 14 wells Performed statistical analysis.
1/96	рН	Cd, Cr, Cu	х			8010/80 20			Sampled 14 wells Performed statistical analysis. 1995 Annual Report included as Appendix F.
4/96, 7/96	рН	Cd, Cr, Cu	Х			8010/80 20			Sampled 14 wells Performed statistical analysis.

TABLE 2-1 PHIBRO-TECH, INC. Groundwater Monitoring Program Summary (continued)

Sampling Event	Indicator Parameters	Trace Metals	Hexavalent Chromium	Chloride	Nitrate	Volatile Organics	Appendix IX	1,4-Dioxane	Comments
10/96	рН	Cd, Cr, Cu	Х			8010/ 8020			Sampled 14 wells Performed statistical analysis. 1996 Annual Report included as Appendix F.
1/97	рН	Cd, Cr, Cu	х			8260, MTBE			Sampled 14 wells Performed statistical analysis.
4/97, 7/97	рН	Cd, Cr, Cu	х			8260			Sampled 14 wells Performed statistical analysis.
10/97	рН	Cd, Cr, Cu	Х			8260			Sampled 14 wells Performed statistical analysis. 1997 Annual Report included as Appendix F.
1/98	pН	Cd, Cr, Cu	Х			8260			Sampled 14 wells Performed statistical analysis. Hexavalent Chromium by Method 7196 in all wells; and by Method 218.6 in wells MW-4A, MW-14S, MW-15S, and MW-15D.
4/98, 7/98	рН	Cd, Cr, Cu	х			8260			Sampled 14 wells Performed statistical analysis.
10/98	рН	Cd, Cr, Cu	х			8260			Sampled 14 wells Performed statistical analysis. 1998 Annual Report included as Appendix F.
1/99, 4/99, 7/99, 10/99, 01/00, 04/00, 10/00, 04/01	pH	Cd,Cr,Cu	X*			8260	_		Sampled 14 wells Performed statistical analysis. Monitoring and reporting frequency changed from quarterly to semi-annually in April 2000. Monitoring and reporting frequency changed back from semi-annually to quarterly in April 2001.

TABLE 2-1 PHIBRO-TECH, INC.

Groundwater Monitoring Program Summary (continued)

Sampling Event	Indicator Parameters	Trace Metals	Hexavalent Chromium	Chloride	Nitrate	Volatile Organics	Appendix IX	1,4-Dioxane	Comments
07/01, 10/01	рН	Cd,Cr,Cu	X*			8260	-	MW-015 MW-04 MW-09 MW-11 MW-06D MW-15D	Sampled 14 wells Performed statistical analysis. 2001 Annual Report included as Appendix G (10/01) 1,4-Dioxane sampled in selected wells (MW-01S, MW-04, MW-04A, MW-06D, MW-11, and MW-15D) during 07/01 and 10/01.

Appendix III Parameters -

As, Ba, Cd, Cr, F, Pb, Hg, N, Se, Ag, Endrin, Lindane, Methoxychlor, Toxaphene, 2,4-D, 2,4,5-TP (Silvex), Radium, Gross Alpha & Beta, Turbidity, coliform bacteria.

Water Quality Parameters - Indicator Parameters (IP) -

Cl, Fe, Mn, Phenols, Na, SO4 TOX, TOC, pH, EC (quadruplicate)

624 -

Volatile organics analysis

601/602 -8010/8020 - Purgeable halocarbons/aromatics analysis Purgeable halocarbons/aromatic analysis Purgeable halocarbons/aromatic analysis

8260 -MTBE -

Methyl tertiary butyl ether

Appendix IX Parameters -

See Appendix F in the October 1990 Quarterly Sampling Report for a complete listing of parameters. Analytical method changed from EPA 7196 to 7199 beginning with the October 2000 Sampling Event

Section 3 Laboratory Testing

Severn Trent Laboratories, Inc., (STL) of Santa Ana, California provided Analytical testing of the 22 groundwater samples collected during the October 2001 monitoring event. Fourteen monitoring well samples and two blind duplicate samples from MW-04 and MW-09 were collected and submitted to STL for analysis of purgeable halocarbons/aromatics, cadmium, total and hexavalent chromium, copper, and pH. In addition, two equipment blank samples (EB) and deionized water source (DI) were submitted for analysis of the above parameters. Three travel blanks (TB) were also submitted to STL for analysis of purgeable halogenated/aromatic organics.

The October 2001 groundwater analytical results are discussed in Section 6 and summarized in Tables 6-1 and 6-2. Quality assurance analytical results (duplicates, equipment blanks, and travel blanks) are discussed in Section 4.0 and summarized in Table 4-1. Individual analytical reports for October 2001 are contained in Appendix C.

Section 4 **Quality Assurance**

To verify the accuracy and validity of analytical data, certain quality assurance procedures were implemented. The field and laboratory quality assurance results were checked for deviations from the Quality Assurance (QA) guidelines discussed in the RFI Work Plan.

4.1 Field Quality Assurance

The field QA procedures included the use of duplicate samples, equipment blanks, travel blanks, and the use of chain-of-custody forms. The results of the QA analyses have been compiled in Table 4-1. Detection limits of parameters analyzed are shown in the analytical reports contained in Appendix C. Relative percent differences (RPDs) between original and duplicate samples are also listed in Table 4-1.

4.1.1 Duplicate Samples

Standard accepted practice is to submit one duplicate sample for analysis for approximately every tenth sample collected; a ratio of 1 to 10. During the October 2001 round of sampling, duplicate samples were collected from monitoring wells MW-04 and MW-09. The duplicate samples were submitted to the analytical laboratory as blind samples, and were designated MW-35 and MW-37, respectively, on the chain of custody forms. Monitoring wells MW-04 and MW-09 were selected due to elevated concentrations of certain contaminants detected during previous sampling rounds. Analytical results for the duplicate samples for October 2001 are shown in Table 4-1.

Laboratory results for the sample collected from well MW-04 indicate that the original sample results deviated from the duplicate sample results, by greater than 20%, for the following parameters: Cr (31.7%), Cr+6 (31.7%), ethylbenzene (27.7%), TCE (25.6%), 1,1-dichloroethane (1,1-DCA) (20.9%), and cis-1,2-dichloroethene (cis-1,2-DCE) (21.9%). Sampling results from well MW-09 indicate that results from duplicate samples deviated from the original, by greater than 20%, for the following parameters: ethylbenzene (121.2%), tetrachloroethene (PCE) (26.1%), TCE (25.6%), 1,1-DCA (47.6%), chloroform (CFM) (51.4%), and cis-1,2-DCE (65.5%).

4.1.2 Deionized Water Source Sample

A sample was collected of the deionized water used to clean the equipment (PTI-DI-051) and submitted to the laboratory for VOC, Cd, Cr, Cr $^{+6}$, Cu and pH analyses. Results indicated that chloroform was detected at a concentration of 2.2 micrograms per liter (μ g/L).

4.1.3 Equipment Blanks

Analytical results for the equipment blanks collected during October 2001 are shown in Table 4-1.

Equipment blank EB-01 was obtained by allowing deionized water to run through a new, precleaned, disposable bailer. The second equipment blank EB-02 was obtained by pouring deionized water over the submersible pump after decontamination. The samples were collected in the appropriate containers and submitted for laboratory analysis. Sample EB-01 was collected to evaluate the effectiveness of the factory cleaning process. Sample EB-02 was collected following pump decontamination after sampling well MW-09. The equipment blanks were submitted to the laboratory for analysis of VOCs (EPA Method 8260), cadmium, chromium (total and hexavalent), copper, and pH. The analytical results did not indicate any compound above the method detection limits in either equipment blank with the exception of chloroform in both EB samples. Results indicate that chloroform was detected in both EB samples at a concentration of $2.2\,\mu\text{g}/L$. Blaine Tech Services, a groundwater sampling subconsultant, provided the deionized water used for the collection of the equipment blanks.

4.1.4 Travel Blanks

The detection of compounds in travel blanks is generally indicative of systematic contamination from sample transport, laboratory glassware cleaning, laboratory storage, or analytical procedures. During the October 2001 sampling event, three laboratory-prepared travel blanks (TB01 through TB03) consisting of organic-free water were labeled and submitted to the laboratory for VOC analysis by EPA Method 8260. Travel blanks were placed daily inside each cooler, which contained samples for VOCs.

Table 4-1 shows the results of the travel blank analyses. No compounds were detected above the method detection limit in any of the three travel blanks.

4.1.5 Sample Control

All sample containers were labeled immediately prior to sampling with the sample identification information completed with a waterproof pen. Samples were transported under chain-of-custody and hand delivered by courier to the laboratory in ice-cooled chests. Copies of the chain-of-custody records are included in Appendix D.

4.2 Laboratory Quality Assurance

STL provides internal laboratory QA/QC results with each sample analytical report. Matrix spike, matrix spike duplicate, method blank, and duplicate control sample results are noted in the QA/QC reports. In addition, surrogate recoveries are also noted for VOC analyses. The laboratory QA/QC results were within acceptable limits for the October 2001 sampling. The laboratory control sample results were also within acceptable limits.

Table 4-1
Phibro-Tech, Inc.
Groundwater Analytical Results - October 2001
Field Quality Control Sample Analytical Summary

	_		Metals (mg/L)			VOCs & 1,4-Dioxane (ug/L)													
Weil ID	Sample Date	Sample Type	Cadmium	Chromium		Copper	Benzene	Toluene	Ethyl- benzene	Xylenes, Total	PCE	TCE	1,1-DCE	1,1-DCA	1,2-DCA	CFM	cis- 1,2-DCE	MCL	1,4- Dioxane
MW-04	10/18/2001		0.44	39.8	39.8	0.05 U	50 U	50 U	3700	50 U	50 U	170	50 U	73	50 U	50 U	65	50 U	37
		K	0.4	28.9	28.9	0.05 U	50 U	50 U	2800	50 U	50 U	220	50 U	90	50 U	50 U	81	59	36
		RPD	9.5 %	31.7 %	31.7 %				27.7 %			25.6 %	;	20.9 %			21.9 %	16.5 %	2.7 %
MW-09	10/18/2001		0.005 U	1.3	1.3	0.025 U	5 U	5 U	8.1	5 U	6.5	440	89	260	240	110	15	69	75
		ĸ	0.005 U	1.4	1.4	0.025 U	5 U	5 U	33	5 U	5 U	340	64	160	250	65	7.6	68	88
		RPD		7.4 %	7.4 %				121.2 %	5 U	26.1 %	25.6 %		47.6 %	4.1 %	51.4 %	65.5 %	1.5 %	16 %
DI	10/18/2001	N	0.005 U	0.01 U	0.01 U	0.025 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	2.2	1 U	1 U	0.97 U
EB	10/17/2001	N	0.005 U	0.01 U	0.01 U	0.025 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	2	1 U	1 U	0.95 U
	10/18/2001	N	0.005 U	0.01 U	0.01 U	0.025 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	2	1 U	1 U	0.95 U
тв	10/16/2001	N					1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	
	10/17/2001	N					1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	
	10/18/2001	ТВ					1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	

Notes:

PCE = Tetrachloroethene; TCE = Trichloroethene; DCE = Dichloroethene; DCA = Dichloroethane; CFM = Chloroform; MCL = Methylene chloride.

U = Not detected at a concentration greater than the reporting limit shown.

Sample Type:

K = Duplicate (split) Sample

TB = Trip Blank

N = Equipment Decontamination Blank

RPD = Relative Percent Difference between original and duplicate samples (%)

Section 5 Groundwater Elevation

On October 16, 2001 prior to the initiation of well evacuation procedures, the depth to groundwater was measured in 21 of the 24 on-site monitoring wells. Groundwater elevations were calculated by subtracting the depth to static water level from the surveyed elevation of the corresponding monitoring well.

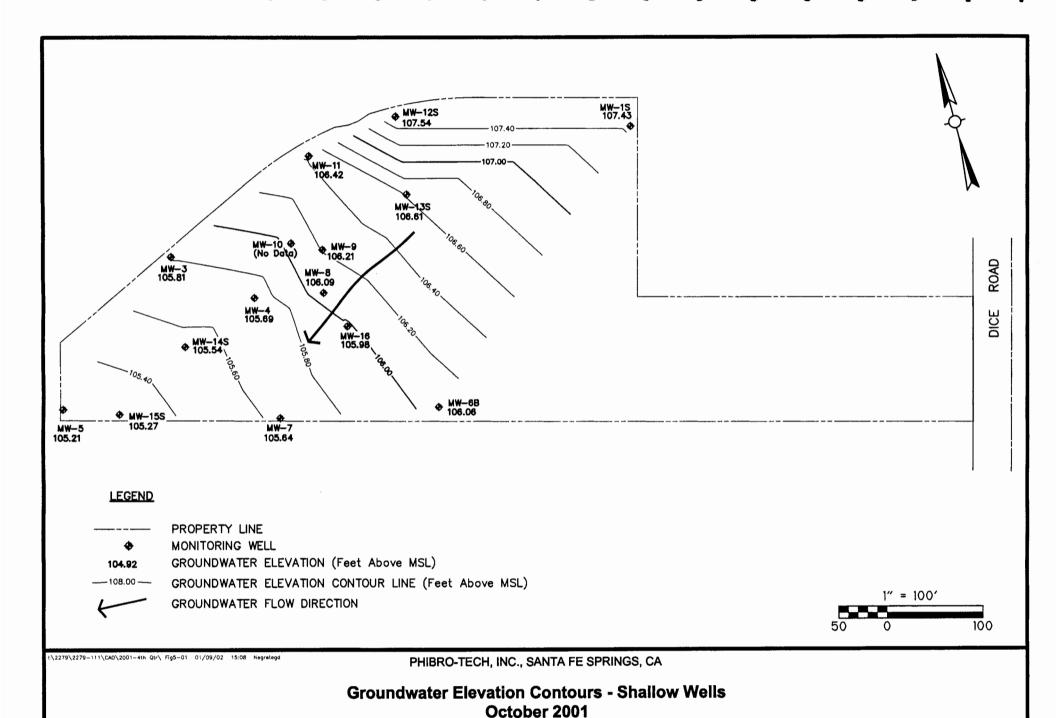
All of the monitoring well casing elevations were surveyed during the RFI and three wells (MW-04, MW-09, and MW-10) were resurveyed in January 1996 following wellhead repair. In July 1998, wellhead repairs were performed on wells MW-03, MW-06A, MW-06B, MW-06D, MW-08, MW-11, MW-12S, MW-12D, MW-13S, MW-13D, and MW-16. These wells were resurveyed during the July 1998 monitoring event. During the April 2000 monitoring event, two additional wellheads were repaired (MW-14S and MW-14D). Wells MW-14S and MW-14D were resurveyed during September 2001.

During the October 2001 groundwater sampling round, water level measurements were taken at shallow wells MW-01S, MW-03, MW-04, MW-05, MW-06B, MW-07, MW-08, MW-09, MW-11, MW-12S, MW-13S, MW-14S, MW-15S, and MW-16. Water level measurements were also taken at deep wells MW-01D, MW-04A, MW-06D, MW-12D, MW-13D, MW-14D, and MW-15D. These wells were measured in order to evaluate the direction and gradient of groundwater flow underlying the facility and to help characterize the shallow and deep aquifer interaction. Well MW-02 was not measured due to its proximity to MW-12S. Well MW-06A was measured and found to be dry. Well MW-10 was inaccessible during the water level round.

Table 5-1 lists the depths to water and groundwater elevations for each well measured. Figure 5-1 shows the approximate groundwater surface elevation of the upper Hollydale Aquifer for wells screened in the shallow interval (45 to 77 feet below ground surface) using data collected during the October 2001 sampling round. The contours shown in Figures 5-1 and 5-2 were generated by D.C.A., a surface contouring software developed by Softdisk, which is commonly used in conjunction with Computer Aided Drafting and Design (CAD) to produce contour maps and other graphics.

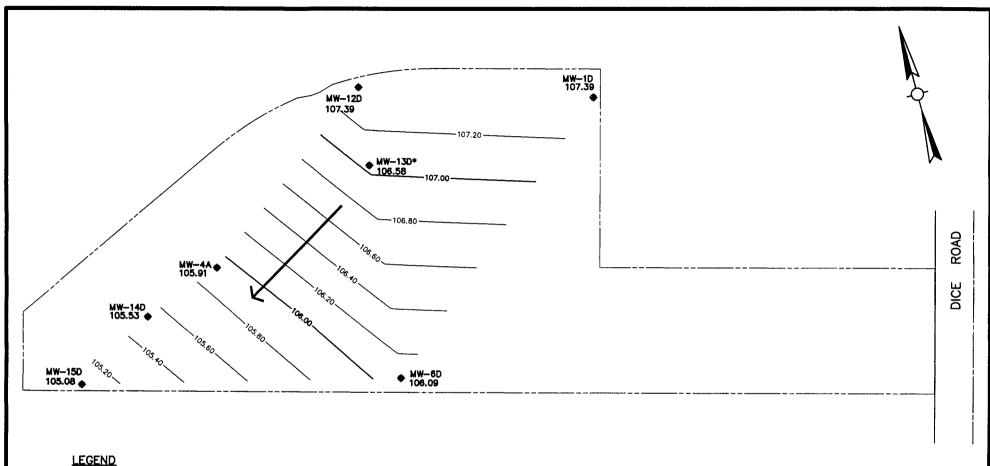
The direction of groundwater flow in the shallow monitoring wells is approximately southwest at an average gradient of 0.38 feet per 100 feet in the western portion of the facility, where the majority of the monitoring wells are located. The gradient in the shallow wells is comparable to the July 2001 sampling event, which had a gradient of 0.36 feet per 100 feet.

Figure 5-2 shows the approximate groundwater elevation of the lower Hollydale Aquifer for wells screened in the deeper interval (78.3 to 123.5 feet below ground surface). Groundwater contours for the deeper wells follow the same general trend as



those of the shallow wells, with a direction of groundwater flow towards the southwest at an average gradient of 0.54 feet per 100 feet.

With the 21 wells measured for water levels during the October 2001 sampling round, there were seven locations where a deep well was measured adjacent to a shallow well. Shallow wells are screened within the interval of 45 to 77 feet bgs. Deep wells are screened within the interval of 78.3 to 107 feet bgs, with the exception of MW-15D, which is screened from 108.5 to 123.5 feet bgs. Of the well pairs, groundwater elevations at deep wells MW-4A and MW-6D were slightly lower (0.03 feet to 0.22 feet) than the corresponding shallow well elevations. The groundwater elevations at deep wells MW-01D, MW-12D, MW-13D, MW-14D and MW-15D were slightly higher (0.01 feet to 0.19 feet) than the corresponding shallow well elevations. Based on these and past groundwater elevation comparisons among shallow and deep well pairs, it does not appear that a well-defined vertical gradient between shallow and deep intervals exists.


Average groundwater elevations during the October 2001 sampling event decreased from the previous sampling event in July 2001. Water levels decreased by an average of 4.33 feet and ranged from a minimum decrease of 3.38 feet at well MW-12D to a maximum decrease of 4.59 feet at well MW-04.

CDM

Figure 5-1

PROPERTY LINE MONITORING WELL GROUNDWATER ELEVATION (Feet Above MSL) 104.92 GROUNDWATER ELEVATION CONTOUR LINE (Feet Above MSL)

GROUNDWATER FLOW DIRECTION ANOMALOUS MEASUREMENT, NOT CONTOURED 1" = 100' 100

1:\2279\2279-111\CAD\2001-4th Qtr\ Fig5-02 01/09/02 17:51 Negretegd

PHIBRO-TECH, INC., SANTA FE SPRINGS, CA

Groundwater Elevation Contours - Deep Wells October 2001

CDM

TABLE 5-1
PHIBRO-TECH, INC.
October 2001 Quartery Monitoring Well Sampling
Groundwater Elevation Data

Well No.	Well Headspace* (ppm)	Total Depth Constructed (ft) (bgs)	Total Depth Measured (ft) (bgs)	Perforated Intervals (ft)	Calculated Casing Fill (ft)	M.P. Elevation (ft)	Depth to Water (ft below MP)	Groundwater Elevation (ft above MSL) October 2001	Groundwater Elevation (ft above MSL) July 2001
1S	0.0 / 0.0	62.5	62.0	47-62.5	0.5	152.63	45.20	107.43	111.58
1D	0.0 / 0.0	94.8	96.0	79.5-94.5	0.0	152.60	45.21	107.39	111.61
3	0.0 / 0.0	74.1	76.3	45-75	0.0	154.75	48.94	105.81	110.35
4	0.0 / 0.0	67.5	70.4	45-75	0.0	152.37	46.68	105.69	110.28
4A	0.0 / 0.0	107.0	108.8	87-107	0.0	152.46	46.55	105.91	110.38
5	0.0 / 0.0	75.0		45-75		153.26	48.05	105.21	109.76
6A	41.0 / 0.0			10-30				Dry	Dry
6 B	0.0 / 0.0	77.6	76.6	45-75	1.0	149.53	43.47	106.06	110.29
6D	0.0 / 0.0	95.5	92.9	79-94	2.6	150.13	44.04	106.09	110.31
7	0.0 / 0.0	71.5	71.8	45-75	0.0	149.42	43.78	105.64	109.98
8	10.0 / 0.0	71.0		41-71		150.17	44.08	106.09	110.47
9	7.0 / 0.0	73.5	75.6	44-77	0.0	152.96	46.75	106.21	110.63
10	0.0 / 0.0	75.0		45-75		153.89			110.59
11	0.0 / 0.0	75.5	77.0	55-75	0.0	155.76	49.34	106.42	110.86
12S	0.0 / 0.0	72.0		51-72		155.79	48.25	107.54	111.30
12D	0.0 / 0.0	101.0		84.5-100		155.72	48.33	107.39	110.77
13S	0.9 / 0.0	70.3		50.3-70.3		151.72	45.11	106.61	110.96
13D	0.0 / 0.0	93.3		78.3-93.3		151.68	45.10	106.58	110.93
14S	4.0 / 0.0	71.5	70.9	46-72	0.6	150.54	45.00	105.54	110.07
14D	0.0 / 0.0	109.0		88-103		150.60	45.07	105.53	110.07
15S	0.0 / 0.0	71.5	71.6	51.5-71.5	0.0	151.01	45.74	105.27	109.84
15D	0.0 / 0.0	123.8	123.9	108.5-123.5	0.0	150.96	45.88	105.08	109.62
16	0.0 / 0.0	62.5	62.2	42-62	0.3	150.27	44.29	105.98	110.34

M.P. = Measuring point (top of steel casing)

MSL = mean sea level

G.W. = Groundwater

* = Measured with PID prior to sampling (casing/background)

--- = Not measured or not calculated.

Note: Depth to water measurements collected on October 16, 2001

BGS = below ground surface

prior to purging/sampling on-site wells.

Surface elevation for wells MW-14S and MW-14D were resurveyed on September 24, 2001.

Section 6 Groundwater Quality

Prior to the development of the project water quality database in July 2001, selected historical analytical results for each sampled well were presented in summary tables (see Appendix B). The two Appendix B tables present selected groundwater analytical parameters (hexavalent and total chromium, cadmium, copper, purgeable aromatics and trichloroethene), and groundwater elevations at shallow-well and deep-well locations sampled prior to July 2001. With the development of the project water quality database, analytical results for samples collected during July 2001 and all subsequent sampling events are summarized in the tables presented in this section. Laboratory analytical reports from all wells sampled during the October 2001 sampling round are located in Appendix C.

Consistent with the results of laboratory testing performed on the groundwater samples collected since January 1989 from the on-site monitoring wells, three contaminant plumes in the Hollydale Aquifer were identified. Historically, these plumes have been present at varying concentrations and lateral extent. One small plume, consisting primarily of chromium, has been aligned in a northeasterly to southwesterly direction in the vicinity of wells MW-04 and MW-14S. The second, consisting of purgeable aromatics, has also been aligned in a northeasterly to southwesterly direction with the highest concentrations generally found in wells MW-04, MW-14S, and MW-09. The third plume consists of TCE and related parameters with highest concentrations generally detected in wells MW-04, MW-09, MW-11, and MW-14S.

6.1 Halogenated Volatile Organic Compounds

Table 6-1 shows the analytical results from July 2001 through October 2001 for all wells sampled. TCE was the primary compound detected, with miscellaneous other halogenated organics also detected. The table also shows, for comparison purposes, maximum contaminant limits (MCLs) and concentrations for water supply wells in the Santa Fe Springs area. The supply wells, however, are likely screened much deeper than the wells at PTI. The City of Santa Fe Springs Annual Water Quality Report for 1999 (the most recent report available) is contained in Appendix E of this document.

Trichloroethene (TCE)

TCE was detected in all 14 of the groundwater monitoring wells sampled. The highest concentration of TCE detected was 1,500 $\mu g/L$ in well MW-11, an increase from the result of 400 $\mu g/L$ in July 2001. The concentration detected in October 2000 (2,900 $\mu g/L$) represented an all time high for this well, which is located along the northern boundary of the site. The TCE detected in well MW-11 likely originated from an off-site upgradient source. The second highest concentration of TCE detected was 440 $\mu g/L$ in well MW-09, an increase from the result of 110 $\mu g/L$ in July 2001. Of

the 14 wells sampled, 10 wells contained concentrations of TCE that exceeded the MCL of 5 $\mu g/L.$

Compared to July 2001, TCE concentrations increased in 9 of the 10 shallow wells sampled. Excluding MW-11 and MW-09, TCE concentrations ranged from 2.8 μ g/L (MW-15S) to 290 μ g/L (MW-03). Compared to July 2001, TCE concentrations decreased in the shallow well MW-15S from 5.1 μ g/L to 2.8 μ g/L.

Of the 4 deep wells sampled, TCE concentrations decreased in well MW-04A from 44 μ g/L to 22 μ g/L compared with the July 2001 results. The remaining 3 deep wells TCE concentrations decreased compared to July 2001 and ranged from 3.5 μ g/L to 6.7 μ g/L.

Concentrations of TCE detected in shallow and deep wells are shown on Figures 6-1 and 6-2, respectively.

A review of the historical analytical results contained in Appendix B reveals that, with minor exceptions, TCE has historically been detected in all on-site monitoring wells, including the upgradient wells. Past discussions with Department of Health Services (now Cal EPA DTSC) and Regional Water Quality Control Board staff indicate that TCE and other halogenated organic are generally recognized as regional groundwater contaminants.

Other Halogenated Organics

During the October 2001 sampling, other halocarbon organics were detected in most of the on-site wells. Monitoring well MW-07 contained concentrations of 1,1-dichloroethene (1,1-DCE) at 16 μ g/L, 1,1-DCA at 78 μ g/L, 1,2-dichloroethane (1,2-DCA) at 27 μ g/L, chloroform at 2.8 μ g/L, cis-1,2-DCE at 36 μ g/L and trans-1,2-dichloroethene (trans-1,2-DCE) at 4.8 μ g/L. Of the six compounds listed above, only trans-1,2-DCE was reported at a concentration lower than the reported MCL.

Relatively high concentrations of 1,1-DCA were detected in wells MW-04, MW-09, MW-11 and MW-16 at concentrations ranging from 73 μ g/L to 410 μ g/L. Compared to the July 2001 results, the concentrations of 1,1-DCA increased in all four wells. The MCL for 1,1-DCA is 5.0 μ g/L.

Results indicated that detectable concentrations of 1,2-DCA were reported in six of the samples analyzed. Concentrations of 1,2-DCA ranged from 1.1 μ g/L to 240 μ g/L in wells MW-01S, MW-07, MW-09, MW-14S, MW-15, and MW-16. The concentration of 1,2-DCA increased from 68 μ g/L to 240 μ g/L in monitoring well MW-09. The MCL for 1,2-DCA is 0.5 μ g/L.

The compounds PCE, 1,1,1,-trichloroethane (1,1,1-TCA), carbon tetrachloride, chloroform and methylene chloride were also detected in several wells (see Table 6-1).

Detections of these other halogenated organic compounds are assumed to be related to the TCE plume.

6.2 Aromatic Volatile Organic Compounds

According to PTI personnel, organic chemicals have not historically been used on-site in any of the production processes. Two 10,000-gallon underground storage tanks (diesel and gasoline), however, were located in the approximate center of the facility, due east of the drum wash area. During tank removal operations in July 1989, petroleum hydrocarbon contamination was discovered in the tank excavation. The RFI report indicated that petroleum hydrocarbon contamination was not detected at depths below 30 feet near the former tank locations. Although they have not been used on-site, aromatic compounds have been historically detected in groundwater underlying the facility. The primary aromatic organic compounds of concern are toluene, ethylbenzene and total xylenes, which vary in both concentration and lateral extent. The RFI report indicated that these compounds appeared to be migrating onto the subject property from the property to the north. According to Los Angeles County Department of Public Works files, leaks from tanks containing purgeable aromatic compounds with subsequent groundwater contamination are known to have occurred at the property to the north of PTI.

Aromatic VOC results for October 2001 are presented in Table 6-1. Concentrations of total aromatics (BTEX) for the shallow wells are illustrated on Figure 6-3. Historic sampling results indicate that purgeable aromatic contamination originated off-site and has migrated onto the subject property. During previous sampling events, elevated concentrations of toluene, ethylbenzene and xylenes were detected in MW-11 and MW-3 along the northern perimeter of the property.

Since approximately July 1991, elevated concentrations of these compounds have been detected in well MW-04 and MW14S, indicating that the plume may be migrating downgradient. BTEX concentrations in MW-04 begin to gradually decrease from approximately October of 1998 through January 2000. Results from the January 2000 sampling event indicated a total BTEX concentration of 11.1 μ g/L. However, during the October 2000 and April 2001 sampling events total BTEX concentrations in well MW-04 had increased to 2,500 μ g/L and 4,050 μ g/L, respectively. Results from the October 2001 sampling event indicated a total BTEX concentration of 3,700 μ g/L at well MW-04. The majority of the total BTEX present is in the form of ethylbenzene. The second highest total BTEX concentration of 212 μ g/L was detected in well MW-11.

Benzene

Benzene was detected above the reporting limit in two of the wells sampled. Results indicated the samples from MW-01D and MW-15D contained benzene at concentrations of 1.5 μ g/L and 2.2 μ g/L, respectively. During the prior July 2001 sampling event, benzene was not detected above the reporting limit in any of the

14 wells sampled. Historical evidence indicates that benzene is not a contaminant of concern for the facility.

Toluene

Toluene was not detected above the reporting limit in any of the 14 wells sampled. Toluene was not detected in any of the wells during the prior July 2001 sampling event.

Significant toluene concentrations were detected during July 1990 to July 1991 (MW-11), July 1991 to January 1992 (MW-04), July 1992 to July 1993 (MW-09), and July 1994 to January 1995 (MW-09). Concentrations were also detected at location MW-04 during January 1993. Elevated ethylbenzene and total xylene concentrations are generally associated with elevated toluene concentrations.

Ethylbenzene

During the October 2001 sampling round, ethylbenzene was detected at concentrations greater than the reporting limit in MW-04, MW-09, MW-11, MW-14S, and MW-16. The highest concentration of ethylbenzene (3,700 μ g/L) was detected in MW-04, which was an increase from 2,400 μ g/L reported in July 2001. The second highest concentration of ethylbenzene (90 μ g/L) was detected in MW-11. Since the prior sampling event in July 2001, ethylbenzene concentrations have increased in wells MW-04, MW-11, MW-14S, and MW-16 and have decreased in well MW-09.

Total Xylenes

Total xylenes were detected above the reporting limit in two wells during the October 2001 sampling event. The concentration of total xylenes detected in MW-01D and MW-11 were 1.5 μ g/L and 122 μ g/L, respectively. Previous results from July 2001 indicated that well MW-09 contained total xylenes at a concentration of 25 μ g/L.

6.3 1,4-Dioxane

Table 6-1 shows the analytical results for 1,4-Dioxane during the July and October 2001 sampling events. Groundwater samples from wells MW-01S, MW-04, MW-04A, MW-06D, MW-09, MW-11 and MW-15D were analyzed for 1,4-Dioxane. The highest concentrations (130 and 140 $\mu g/L$) were detected in upgradient shallow well MW-01S during July and October 2001, respectively.

6.4 Inorganic and Miscellaneous Parameters

Table 6-2 shows the analytical results for inorganic parameters (cadmium, total and hexavalent chromium, copper, and pH) for samples collected since July 2001.

Hexavalent Chromium (Cr+6)

During the October 2001 sampling, hexavalent chromium was analyzed using EPA Method 7199 with a method detection limit of 0.002 mg/L and a reporting limit of 0.002 mg/L. Prior to the April 2001 sampling event, hexavalent chromium was analyzed using EPA Method 7196 with a reporting limit of 0.02 mg/L.

Hexavalent chromium was detected in 6 of the 14 wells sampled. Monitoring wells MW-04 and MW-09 contained the highest concentrations of hexavalent chromium at 32 mg/L and 1.1 mg/L, respectively. During the July 2001 sampling event, these same two wells contained the highest concentration of hexavalent chromium. The remaining four wells contained hexavalent chromium concentrations that ranged from 0.0049 mg/L to 0.0088 mg/L during October 2001. Figure 6-4 shows the concentrations of hexavalent chromium detected in the shallow wells during the October 2001 sampling event.

The water purged from MW-04 has typically been bright yellow in color since CDM began sampling the wells on a quarterly basis in January 1989. During the October 2001 sampling round, the color of water from MW-04 was again noted as yellow.

Figure 6-5 shows the concentrations of hexavalent chromium and groundwater elevations in MW-04 over time. The concentrations of hexavalent chromium at MW-04 decreased from July 1989 (120 mg/L) to July 1993 (1.8 mg/L), while groundwater elevations increased. Since July 1993, hexavalent chromium concentrations have fluctuated while groundwater elevations have remained fairly constant. Historically, hexavalent chromium has been detected in four other wells other than MW-04, although the highest concentration has always been detected at MW-04.

At MW-15S, hexavalent chromium was detected at concentrations of 0.0074 and 0.0088 mg/L during the July and October 2001 sampling events, respectively.

Total Chromium (Cr[T])

Total chromium was detected above the reporting limit in three monitoring wells during the October 2001 sampling event. The highest concentration was detected in well MW-04 at a concentration of 39.8 mg/L, which is an increase from 12.6 mg/L in July 2001. Total chromium was also detected in MW-09 and MW-14S at concentrations of 1.3 mg/L and 0.14 mg/L, respectively. Figure 6-6 shows the concentrations of total chromium detected in shallow monitoring wells during October 2001. Figure 6-7 shows the concentrations of total chromium and corresponding groundwater elevations in MW-04 over time. Comparison of historical total chromium data with present data (Appendix B) indicates that total chromium concentrations, like those of hexavalent chromium, generally decreased from January 1989 to July 1993, and have fluctuated since July 1993. Historically, the highest total chromium concentrations have been detected in MW-04. Sporadic

detections of total chromium close to the detection limit have occurred historically in nearly all shallow wells on-site.

Cadmium (Cd)

During the October 2001 sampling event, cadmium was detected at a concentration greater than the reporting limit in one well. Cadmium was detected in well MW-04 at a concentration of 0.44 mg/L, which is an increase from 0.32 mg/L in July 2001.

Previous concentrations in MW-04 have ranged from 0.028 mg/L in January 1989 to 0.86 mg/L in July 1992. Figure 6-8 shows the cadmium concentrations detected in the on-site wells during July 2001. Figure 6-9 shows the concentrations in MW-04 of cadmium and corresponding groundwater elevations in MW-04 over time. As shown on Figure 6-9, cadmium concentrations have fluctuated considerably (i.e., from non-detectable at a detection limit of 0.005 mg/L during July 1993 to 0.86 mg/L during July 1992) since July 1990. Cadmium has been detected consistently in only well, MW-04.

Copper (Cu)

Copper was detected at concentrations greater than the reporting limit in two wells, MW-07 and MW-14S, at concentrations of 0.073 mg/L and 0.042 mg/L, respectively. Figure 6-10 shows the copper concentrations detected in the on-site wells during October 2001. Historically, elevated concentrations of copper above the MCL have generally not been detected in on-site monitoring wells.

pH

Groundwater samples from all wells were measured for pH in the field during purging activities and also by the analytical laboratory on the samples submitted for analysis. Field pH measurements were recorded in the field logbook during well purging. In October 2001, the field measurements of pH generally correlated with the values shown in Table 6-2, which range from 6.7 to 7.6.

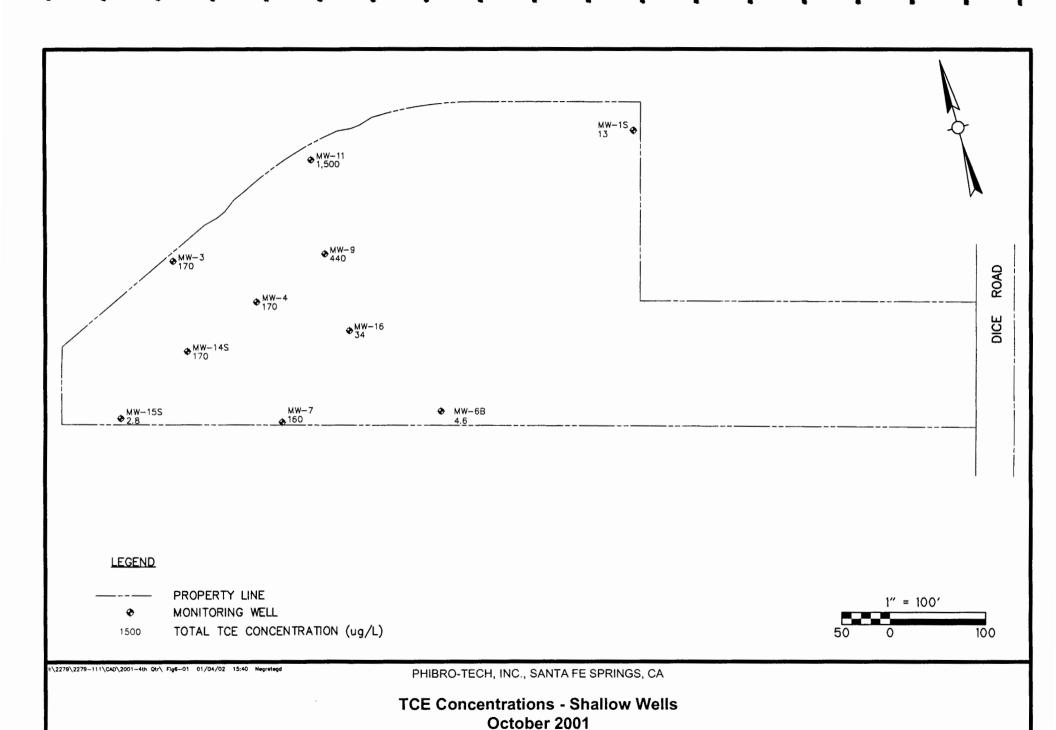
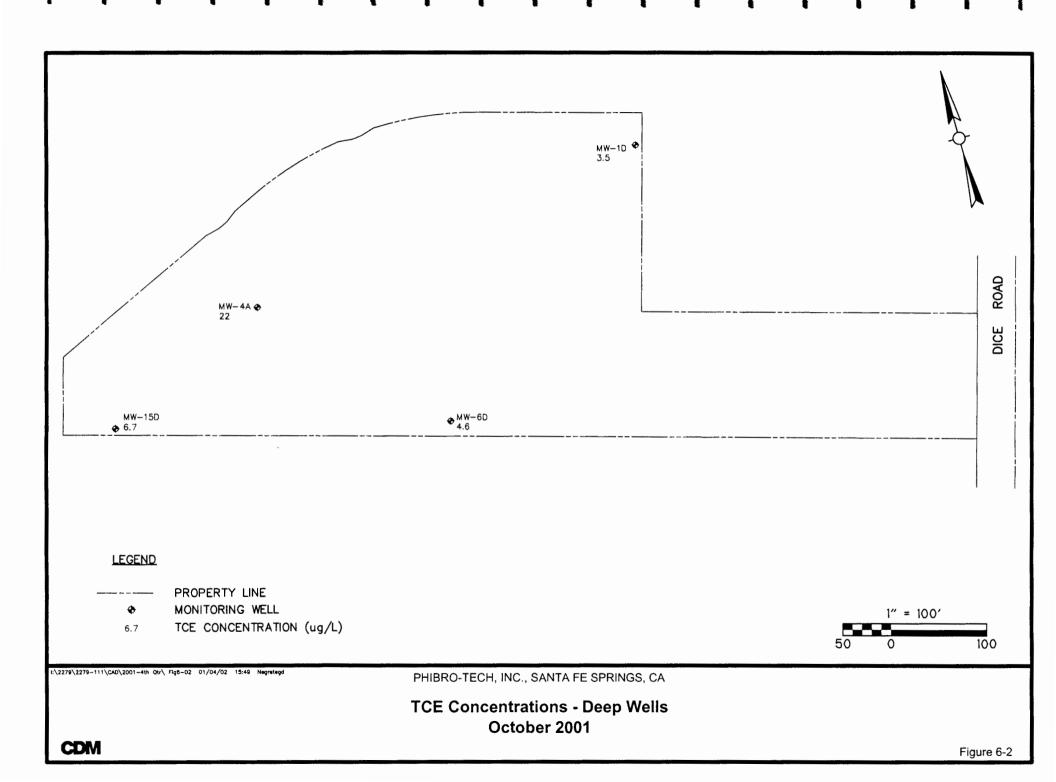
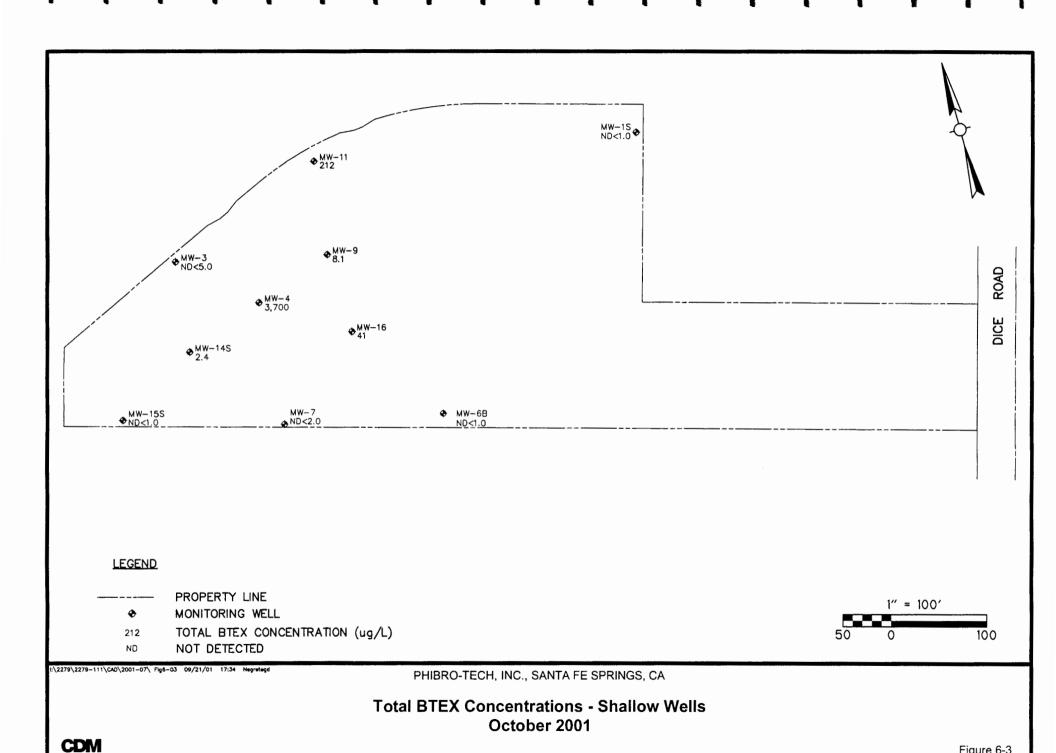
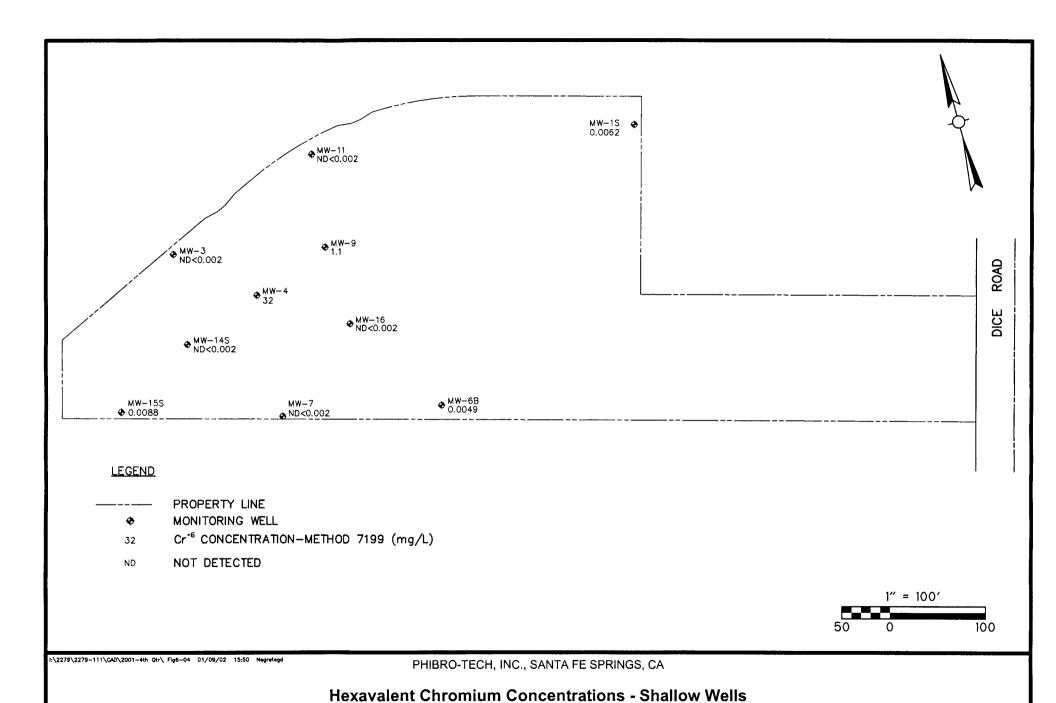
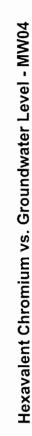



Figure 6-1

CDM


Figure 6-3

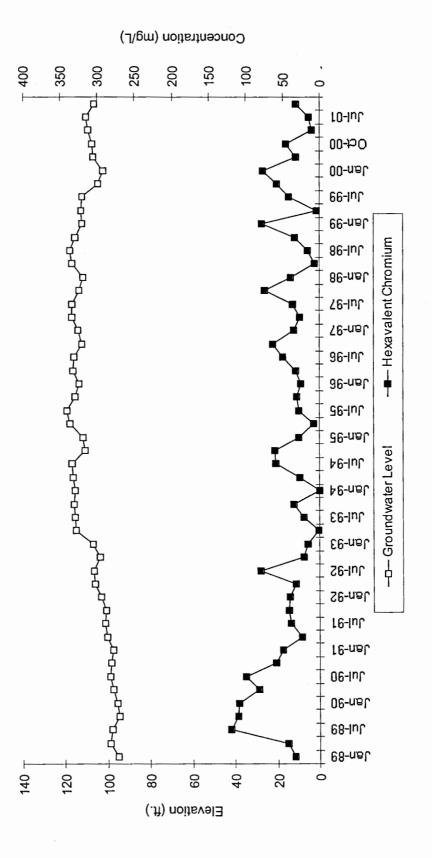

October 2001

Figure 6-4

CDM

PHIBRO-TECH, INC., SANTA FE SPRINGS, CA

1:2279/2279-111/CAD\2001-4th Qtr/PhiTech-Oct01MWSamp.cdr HexChrom - Negretegd - 01/10/2002

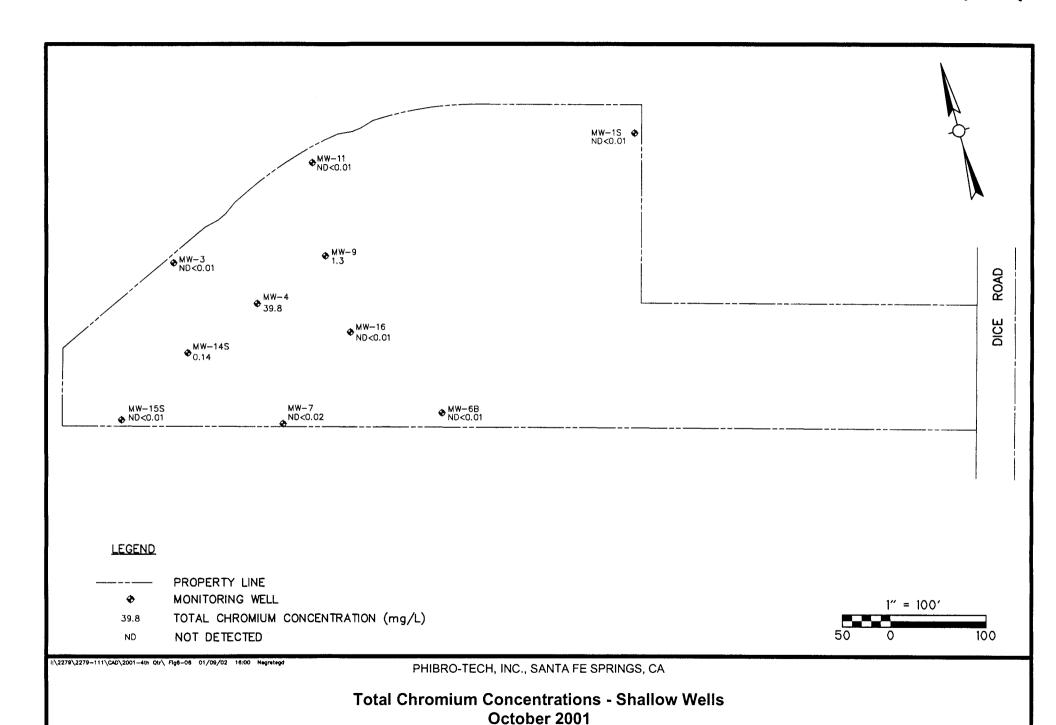
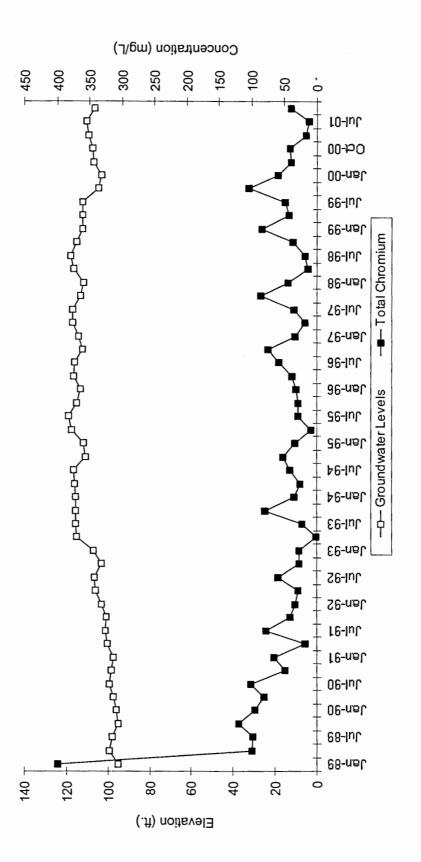
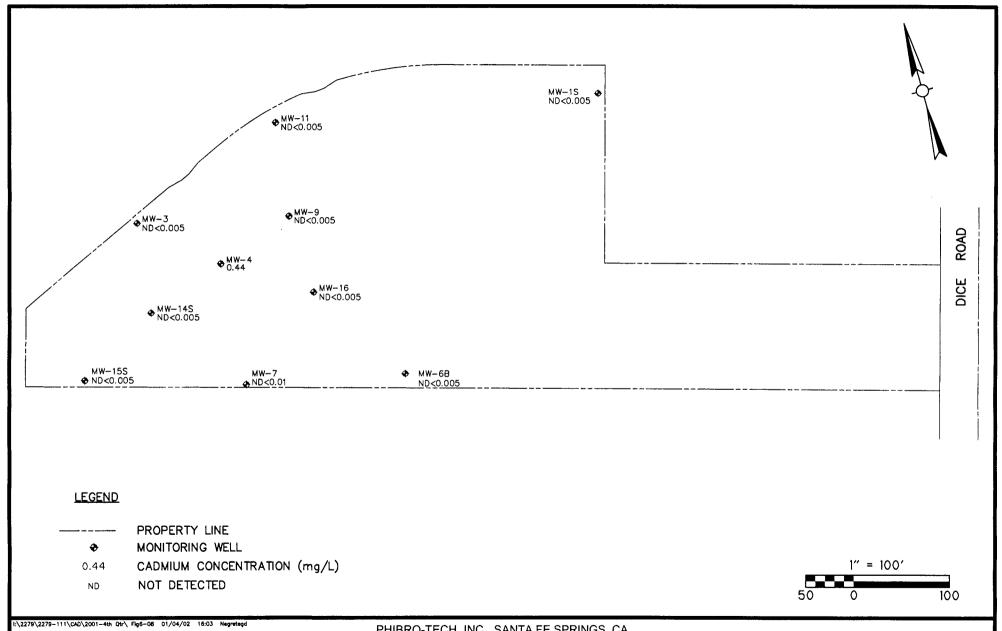



Figure 6-6

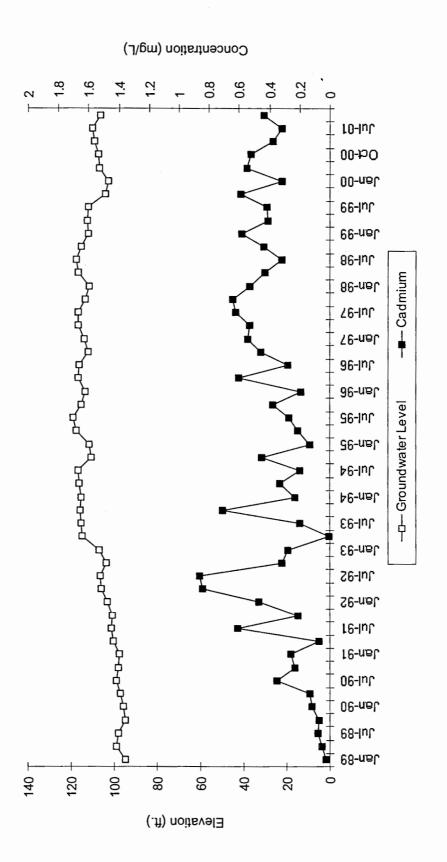
CDM



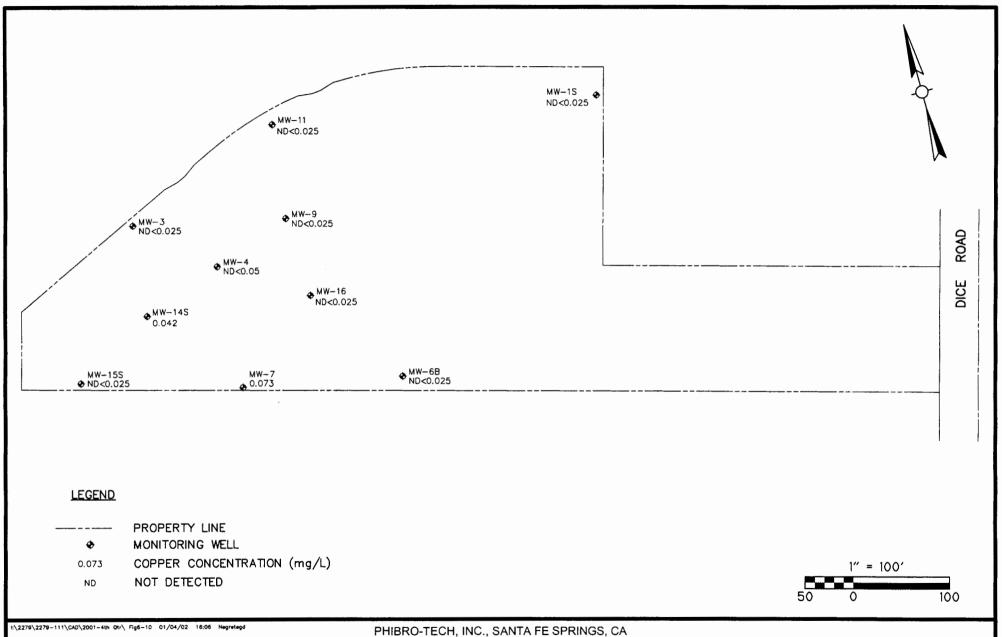
PHIBRO-TECH, INC., SANTA FE SPRINGS, CA

I:\2279\2279-111\CAD\2001-4th Qtr\PhiTech-Oct01MWSamp.cdr TtlChrom - Negretegd - 01/10\2002

8


CDM

PHIBRO-TECH, INC., SANTA FE SPRINGS, CA


Cadmium Concentrations - Shallow Wells October 2001

PHIBRO-TECH, INC., SANTA FE SPRINGS, CA

I:2279/2279-111/CAD/2001-4th Qtr\PhiTech-Oct01MWSamp.cdr Cadmium - Negretegd - 01/10/2002

Copper Concentrations - Shallow Wells October 2001

CDM

Table 6-1
Phibro-Tech, Inc.
Groundwater Analytical Results - October 2001
Volatile Organic Compounds (VOCs) and 1,4-Dioxane Analytical Summary

Well Number		Sample Benzene Type (1)	Toluene (150)	Ethyl- benzene (700)	Xylenes, Total (1,750)	PCE (5)	1,1,1- TCA (200)	TCE (5)	1,1-DCE (6)	1,1-DCA (5)	1,2-DCA (0.5)	CCI4 (0.5)	CFM (100)	cis- 1,2-DCE (6)	trans- 1,2-DCE (10)	MCL (5)	1,4- Dioxane (3#)
MW-14S	10/17/01	2 U	2 U	2.4	2 U	2.4	2 U	170	39	56	6.4	22	23	5.2	2 U	2 U	
MW-15D	7/19/01	1 U	1 U	2.5	1 U	1.8	1 U	2.8	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	0.95 U
	10/17/01	2.2	1 U	1 U	1 U	2.4	. 1 U	6.7	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	0.95 U
MW-15S	7/19/01	1 U	1 U	1 U	1 U	1.4	1 U	5.1	1 U	1 U	11	2.1	4	1 U	1 U	1 Ų	
	10/17/01	1 U	1 U	1 U	1 U	1.2	1 U	2.8	1 U	1 U	8.2	2	3.5	1 U	1 U	1 U	
MW-16	7/19/01	2.5 U	2.5 U	2.7	2.5 U	2.5 U	2.5 U	26	7.3	72	160	2.5 U	2.5 U	7.2	2.5 U	2.5 U	
	10/18/01	2 U	2 U	41	2 U	2 U	2 U	34	13	130	49	2 U	2 U	14	2.8	2 U	

Notes:

PCE = Tetrachloroethene; TCE = Trichloroethene; TCA = Trichloroethene; DCE = Dichloroethene; DCA = DCA =

California Maximum Contaminant Levels (MCLs) are shown in parenthesis. MCL shown for chloroform is the sum of trihalomethane isomers # = California Action Level.

Samples analyzed by EPA Method 8260.

All concentrations are reported in micrograms per liter (ug/L).

Only compounds detected in one or more samples are listed.

U = Not detected at a concentration greater than the reporting limit shown.

Sample Type:

K = Split sample

Table 6-2
Phibro-Tech, Inc.
Groundwater Analytical Results - October 2001
Metals and pH Analytical Summary

10/16/01	Well	Sample	Sample		Cadmium	Chromium		Copper
NW-01S 7/17/01 6.6 0.005 U 0.01 U 0.002 U 0.025 U	Number	Date	Туре	рН	(0.005)	(0.05)	Cr (+6)	(1.3)
NW-01S 7/1701 6.6 0.005 U 0.01 U 0.002 U 0.025 U 0	MW-01D	7/17/01		7.0	0.00511	0.0111	0.0055	0.02511
MW-01S 7/17/01 6.6 0.005 U 0.01 U 0.002 U 0.025 U 0.01 U 0.0062 U 0.025 U 0.01 U 0.002 U 0.025 U 0.01 U 0.002 U 0.025 U 0.01 U 0.006 U 0.01 U 0.002 U 0.025 U 0.01 U 0.006 U 0.01 U 0.006 U 0.025 U 0.025 U 0.025 U 0.01 U 0.006 U 0.025 U 0.01 U 0.006 U 0.025 U 0.025 U 0.01 U 0.006 U 0.025 U 0.025 U 0.01 U 0.006 U 0.025 U 0.025 U 0.01 U 0.007 U 0.025 U 0.025 U 0.01 U 0.007 U 0.025 U 0.025 U 0.01 U 0.006 U 0.025 U 0.025 U 0.025 U 0.01 U 0.006 U 0.025 U 0.025 U 0.025 U 0.01 U 0.006 U 0.025 U 0	IVIVY-0 ID							
10/16/01 6.8		10/16/01		7.4	0.005 0	0.010	0.002 0	0.025 0
MW-03 7/17/01 7 0.005 U 0.01 U 0.002 U 0.025 U MW-04 7/18/01	MW-01S	7/17/01		6.6	0.005 U	0.01 U	0.002 U	0.025 U
10/17/01		10/16/01		6.8	0.005 U	0.01 U	0.0062	0.025 U
MW-04 7/18/01	MW-03	7/17/01		7	0.005 U	0.01 U	0.002 U	0.025 U
New -orange		10/17/01		7.1	0.005 U	0.01 U	0.002 U	0.025 U
NW-04A T/18/01 N	M/M/-OA	7/19/01		6.0	0.32	12.6	15	0.02511
10/18/01	19199-0-4	7710/01	V					
K 6.8 0.4 28.9 33 0.05 U MW-04A 7/18/01 7.2 0.005 U 0.01 U 0.00555 0.025 U MW-06B 7/18/01 7.2 0.005 U 0.01 U 0.0053 0.025 U MW-06D 7/18/01 7.5 0.005 U 0.01 U 0.0049 0.025 U MW-06D 7/18/01 7.3 0.005 U 0.01 U 0.0024 0.025 U MW-07 7/18/01 7.6 0.005 U 0.01 U 0.002 U 0.037 MW-07 7/18/01 6.6 0.005 U 0.01 U 0.002 U 0.037 MW-07 7/18/01 6.6 0.005 U 0.01 U 0.002 U 0.037 MW-09 7/19/01 7 0.005 U 0.085 0.076 0.025 U MW-09 7/19/01 7 0.005 U 0.082 0.085 0.025 U MW-19/01 6.9 0.005 U 1.3 1.1 0.025 U MW-11 7/19/01 6.8		404004	ĸ					
MW-04A 7/18/01 7.2 0.005 U 0.01 U 0.0055 0.025 U 0.01 U 0.0077 0.025 U 0.01 U 0.0053 0.025 U 0.01 U 0.0049 0.025 U 0.01 U 0.0024 0.025 U 0.01 U 0.002 U 0.025 U 0.01 U 0.002 U 0.037 0.03 U		10/18/01						
10/17/01			K	6.8	0.4	28.9	33	0.05 U
MW-06B 7/18/01 7.2 0.005 U 0.01 U 0.0053 0.025 U MW-06D 7/18/01 7.3 0.005 U 0.01 U 0.0024 0.025 U MW-07 7/18/01 7.6 0.005 U 0.01 U 0.002 U 0.025 U MW-09 7/18/01 6.6 0.005 U 0.01 U 0.002 U 0.025 U MW-09 7/19/01 7 0.005 U 0.085 0.076 0.025 U MW-09 7/19/01 7 0.005 U 0.082 0.085 0.025 U MW-11 7/17/01 6.8 0.005 U 1.3 1.1 0.025 U MW-11 7/17/01 6.8 0.005 U 0.01 U 0.002 U 0.025 U MW-14S 7/19/01 7.1 0.005 U 0.01 U 0.002 U 0.025 U MW-15D 7/19/01 7.2 0.005 U 0.01 U 0.002 U 0.025 U MW-15S 7/19/01 7.3 0.005 U 0.01 U 0.002 U 0.025 U MW-15S 7/19/01 7.2 0.005 U 0.01 0.008 0.008 0.008 U MW-15S 7/19/01 7.2 0.005 U 0.01 U 0.002 U 0.025 U MW-15S 7/19/01 7.2 0.005 U 0.01 U 0.002 U 0.025 U MW-15S 7/19/01 7.2 0.005 U 0.01 U 0.002 U 0.025 U MW-15S 7/19/01 7.2 0.005 U 0.01 U 0.002 U 0.025 U MW-15S 7/19/01 7.2 0.005 U 0.01 U 0.002 U 0.025 U MW-15S 7/19/01 7.2 0.005 U 0.01 U 0.002 U 0.025 U MW-15S 7/19/01 7.2 0.005 U 0.01 U 0.002 U 0.025 U MW-15S 7/19/01 7.5 0.005 U 0.01 U 0.0074 0.025 U MW-15S 7/19/01 7.5 0.005 U 0.01 U 0.0074 0.025 U	MW-04A	7/18/01		7.2	0.005 U	0.01 U	0.0055	0.025 U
10/17/01 7.5 0.005 U 0.01 U 0.0049 0.025 U MW-06D 7/18/01 7.3 0.005 U 0.01 U 0.0024 0.025 U 10/17/01 7.6 0.005 U 0.01 U 0.002 U 0.025 U MW-07 7/18/01 6.6 0.005 U 0.01 U 0.002 U 0.037 10/18/01 6.7 0.01 U 0.02 U 0.002 U 0.073 MW-09 7/19/01 7 0.005 U 0.085 0.076 0.025 U 10/18/01 6.9 0.005 U 1.3 1.1 0.025 U 10/18/01 6.9 0.005 U 1.3 1.1 0.025 U MW-11 7/17/01 6.8 0.005 U 0.01 U 0.002 U 0.025 U 10/18/01 7.1 0.005 U 0.01 U 0.002 U 0.025 U MW-14S 7/19/01 7.1 0.005 U 0.01 U 0.002 U 0.025 U MW-14S 7/19/01 7.1 0.005 U 0.01 U 0.002 U 0.025 U MW-15D 7/19/01 7.3 0.005 U 0.14 0.002 U 0.025 U MW-15D 7/19/01 7.3 0.005 U 0.01 U 0.002 U 0.025 U MW-15S 7/19/01 7.3 0.005 U 0.01 U 0.002 U 0.025 U MW-15S 7/19/01 7.2 0.005 U 0.01 U 0.002 U 0.025 U MW-15S 7/19/01 7.2 0.005 U 0.01 U 0.002 U 0.025 U MW-15S 7/19/01 7.2 0.005 U 0.01 U 0.002 U 0.025 U		10/17/01		7.5	0.005 U	0.01 U	0.0077	0.025 U
10/17/01	MW-06B	7/18/01		7.2	0.005 U	0.01 U	0.0053	0.025 U
MW-06D 7/18/01 7.3 0.005 U 0.01 U 0.0024 0.025 U 0.025 U 0.011/7/01 7.6 0.005 U 0.01 U 0.002 U 0.025 U 0.025 U 0.01 U 0.002 U 0.025 U 0.01 U 0.002 U 0.037 10/18/01 6.7 0.01 U 0.02 U 0.002 U 0.073						0.01 U	0.0049	0.025 U
10/17/01 7.6 0.005 U 0.01 U 0.002 U 0.025 U MW-07 7/18/01 6.6 0.005 U 0.01 U 0.002 U 0.037 10/18/01 6.7 0.01 U 0.02 U 0.002 U 0.073 MW-09 7/19/01 7 0.005 U 0.085 0.076 0.025 U 10/18/01 6.9 0.005 U 1.3 1.1 0.025 U K 6.9 0.005 U 1.4 1.1 0.025 U MW-11 7/17/01 6.8 0.005 U 0.01 U 0.002 U 0.025 U 10/18/01 6.7 0.005 U 0.01 U 0.002 U 0.025 U MW-14S 7/19/01 7.1 0.005 U 0.01 U 0.002 U 0.025 U MW-15D 7/19/01 7.3 0.005 U 0.14 0.002 U 0.025 U MW-15D 7/19/01 7.3 0.005 U 0.01 U 0.002 U 0.025 U MW-15S 7/19/01 7.2 0.005 U 0.01 U 0.002 U 0.025 U MW-15S 7/19/01 7.2 0.005 U 0.01 U 0.002 U 0.025 U MW-15S 7/19/01 7.2 0.005 U 0.01 U 0.002 U 0.025 U MW-15S 7/19/01 7.2 0.005 U 0.01 U 0.002 U 0.025 U		10/17/01		7.0	0.000 0	5.57.5	0.00	
MW-07 7/18/01 6.6 0.005 U 0.01 U 0.002 U 0.037 10/18/01 6.7 0.01 U 0.02 U 0.002 U 0.073 MW-09 7/19/01 7 0.005 U 0.085 0.076 0.025 U 0.018/01 6.9 0.005 U 1.3 1.1 0.025 U 1.4 1.1 0.025 U 1.0/18/01 6.8 0.005 U 0.01 U 0.002 U 0.025 U 0.025 U 10/18/01 6.7 0.005 U 0.01 U 0.002 U 0.025 U 0.025 U 10/18/01 6.7 0.005 U 0.01 U 0.002 U 0.025 U 0.025 U 0.01 U 0.002 U 0.025 U 0.025 U 0.01 U 0.002 U 0.00	MW-06D	7/18/01		7.3	0.005 U	0.01 U	0.0024	0.025 U
10/18/01 6.7 0.01 U 0.02 U 0.002 U 0.073 MW-09 7/19/01 7 0.005 U 0.085 0.076 0.025 U 0.085 0.025 U 0.025		10/17/01		7.6	0.005 U	0.01 U	0.002 U	0.025 U
10/18/01 6.7 0.01 U 0.02 U 0.002 U 0.073 MW-09 7/19/01 7 0.005 U 0.085 0.076 0.025 U 0.085 0.085 0.025 U 0.025	MW-07	7/18/01		6.6	0.005 U	0.01 U	0.002 U	0.037
MW-09 7/19/01 7 0.005 U 0.085 0.076 0.025 U 10/18/01 K 7 0.005 U 0.082 0.085 0.025 U 10/18/01 6.9 0.005 U 1.3 1.1 0.025 U MW-11 7/17/01 6.8 0.005 U 0.01 U 0.002 U 0.025 U 10/18/01 6.7 0.005 U 0.01 U 0.002 U 0.025 U MW-14S 7/19/01 7.1 0.005 U 0.025 0.0046 0.025 U 10/17/01 7.2 0.005 U 0.14 0.002 U 0.042 MW-15D 7/19/01 7.3 0.005 U 0.013 0.0081 0.025 U MW-15S 7/19/01 7.6 0.005 U 0.01 U 0.0074 0.025 U MW-15S 7/19/01 7.5 0.005 U 0.01 U 0.0074 0.025 U								
K 7 0.005 U 0.082 0.085 0.025 U 10/18/01 6.9 0.005 U 1.3 1.1 0.025 U MW-11 7/17/01 6.8 0.005 U 0.01 U 0.002 U 0.025 U MW-14S 7/19/01 6.7 0.005 U 0.01 U 0.002 U 0.025 U MW-14S 7/19/01 7.1 0.005 U 0.025 U 0.0046 0.025 U MW-15D 7/19/01 7.3 0.005 U 0.013 0.0081 0.025 U MW-15S 7/19/01 7.6 0.005 U 0.01 U 0.002 U 0.025 U MW-15S 7/19/01 7.2 0.005 U 0.01 U 0.0074 0.025 U MW-15S 7/19/01 7.5 0.005 U 0.01 U 0.0074 0.025 U								
10/18/01	MW-09	7/19/01		7	0.005 U	0.085	0.076	0.025 U
K 6.9 0.005 U 1.4 1.1 0.025 U MW-11 7/17/01 6.8 0.005 U 0.01 U 0.002 U 0.025 U MW-14S 7/19/01 7.1 0.005 U 0.025 0.0046 0.025 U MW-14S 7/19/01 7.2 0.005 U 0.14 0.002 U 0.042 MW-15D 7/19/01 7.3 0.005 U 0.013 0.0081 0.025 U MW-15S 7/19/01 7.6 0.005 U 0.01 U 0.002 U 0.025 U MW-15S 7/19/01 7.2 0.005 U 0.01 U 0.0074 0.025 U MW-15S 7/19/01 7.5 0.005 U 0.01 U 0.0088 0.025 U			K	7	0.005 U	0.082	0.085	0.025 U
MW-111 7/17/01 6.8 0.005 U 0.01 U 0.002 U 0.025 U 10/18/01 6.7 0.005 U 0.01 U 0.002 U 0.025 U 0.025 U 0.01 U 0.002 U 0.025 U 0.005 U 0.01 U 0.002 U 0.025 U 0.005 U 0.01 U 0.002 U 0.042 U 0.005 U 0.01 U 0.002 U 0.025 U 0.045 U 0.01 U 0.002 U 0.025 U 0.045 U 0.01 U 0.002 U 0.025 U 0.017/01 U 0.005 U 0.01 U 0.0074 0.025 U 0.017/01 U 0.005 U 0.01 U 0.0088 0.025 U 0.01 U 0.0088 0.025 U		10/18/01		6.9	0.005 U	1.3	1.1	0.025 U
10/18/01 6.7 0.005 U 0.01 U 0.002 U 0.025 U MW-14S 7/19/01 7.1 0.005 U 0.025 0.0046 0.025 U 10/17/01 7.2 0.005 U 0.14 0.002 U 0.042 MW-15D 7/19/01 7.3 0.005 U 0.013 0.0081 0.025 U 10/17/01 7.6 0.005 U 0.01 U 0.002 U 0.025 U MW-15S 7/19/01 7.2 0.005 U 0.01 U 0.0074 0.025 U 10/17/01 7.5 0.005 U 0.01 U 0.0088 0.025 U			K	6.9	0.005 U	1.4	1.1	0.025 U
10/18/01 6.7 0.005 U 0.01 U 0.002 U 0.025 U MW-14S 7/19/01 7.1 0.005 U 0.025 0.0046 0.025 U 10/17/01 7.2 0.005 U 0.14 0.002 U 0.042 MW-15D 7/19/01 7.3 0.005 U 0.013 0.0081 0.025 U 10/17/01 7.6 0.005 U 0.01 U 0.002 U 0.025 U MW-15S 7/19/01 7.2 0.005 U 0.01 U 0.0074 0.025 U 10/17/01 7.5 0.005 U 0.01 U 0.0088 0.025 U	MW-11	7/17/01		6.8	0.005 U	0.01 U	0.002 U	0.025 U
MW-14S 7/19/01 7.1 0.005 U 0.025 0.0046 0.025 U 10/17/01 7.2 0.005 U 0.14 0.002 U 0.042 MW-15D 7/19/01 7.3 0.005 U 0.013 0.0081 0.025 U 10/17/01 7.6 0.005 U 0.01 U 0.002 U 0.025 U MW-15S 7/19/01 7.2 0.005 U 0.01 U 0.0074 0.025 U 10/17/01 7.5 0.005 U 0.01 U 0.0088 0.025 U								0.025 U
MW-15D 7/19/01 7.3 0.005 U 0.013 0.0081 0.025 U 10/17/01 7.6 0.005 U 0.01 U 0.002 U 0.025 U 0.025 U 0.015 U 0.01 U 0.002 U 0.025 U 0.015 U 0.01 U 0.002 U 0.025 U 0.017/01 7.2 0.005 U 0.01 U 0.0074 0.025 U 10/17/01 7.5 0.005 U 0.01 U 0.0088 0.025 U		10/10/01		· · ·	5.555			
MW-15D 7/19/01 7.3 0.005 U 0.013 0.0081 0.025 U 10/17/01 7.6 0.005 U 0.01 U 0.002 U 0.025 U 0.025 U 0.015S 7/19/01 7.2 0.005 U 0.01 U 0.0074 0.025 U 10/17/01 7.5 0.005 U 0.01 U 0.0088 0.025 U	MW-14S	7/19/01		7.1	0.005 U	0.025	0.0046	0.025 U
10/17/01 7.6 0.005 U 0.01 U 0.002 U 0.025 U MW-15S 7/19/01 7.2 0.005 U 0.01 U 0.0074 0.025 U 10/17/01 7.5 0.005 U 0.01 U 0.0088 0.025 U		10/17/01		7.2	0.005 U	0.14	0.002 U	0.042
10/17/01 7.6 0.005 U 0.01 U 0.002 U 0.025 U MW-15S 7/19/01 7.2 0.005 U 0.01 U 0.0074 0.025 U 10/17/01 7.5 0.005 U 0.01 U 0.0088 0.025 U	MW-15D	7/19/01		7.3	0.005 U	0.013	0.0081	0.025 U
MW-15S 7/19/01 7.2 0.005 U 0.01 U 0.0074 0.025 U 10/17/01 7.5 0.005 U 0.01 U 0.0088 0.025 U								
10/17/01 7.5 0.005 U 0.01 U 0.0088 0.025 U		10/17/01		7.0	0.000 0	2.0.0	5.302 0	
	MW-15S	7/19/01		7.2	0.005 U		0.0074	
MW-16 7/19/01 7 0.005 U 0.01 U 0.0031 0.025 U		10/17/01		7.5	0.005 U	0.01 U	0.0088	0.025 U
	MW-16	7/19/01		7	0.005 U	0.01 U	0.0031	0.025 U
10/18/01 7 0.005 U 0.01 U 0.002 U 0.025 U								

Page 1 of 2

Table 6-2 Phibro-Tech, Inc. Groundwater Analytical Results - October 2001 Metals and pH Analytical Summary

Well	Camala	01-					_	
11011	Sample	Sample		Cadmium	Chromium		Copper	
Number	Date	Туре	рН	(0.005)	(0.05)	Cr (+6)	(1.3)	

Notes:

California Maximum Contaminant Levels (MCLs) are shown in parenthesis. Secondary MCL is shown for copper.

All concentrations are reported in milligrams per liter (mg/L).

Metals analyzed by EPA Method 6010B, except for Cr (+6), which was analyzed by EPA Method 7199.

pH analyzed by EPA Method 9040B.

U = Not detected at a concentration greater than the reporting limit shown

Analyte not analyzed or not reported if left blank.

Sample Type:

Section 7 Statistical Evaluation

The following sections contain a statistical treatment of the monitoring data designed to determine if on-site wells have been impacted by metals, BTEX compounds (benzene, toluene, ethylbenzene, xylenes) or TCE (trichloroethene). The procedures used are based on the recommendations provided in the 1989 EPA Guidance document, *Statistical Analysis of Ground-water Monitoring Data at RCRA Facilities - Interim Final Guidance* and in the 1992 Addendum document. In some instances, methods which have not been recommended in the documents cited above were used. However, unrecommended techniques were only used to supplement the recommended procedures. When statistical methods outlined in the 1989 guidance document were superseded by the 1992 Addendum, the more recent recommendations were followed.

7.1 Determination of Background Upper Tolerance Limit

Overview

The upper tolerance limit (UTL) is a method that is typically used in compliance monitoring to compare downgradient wells to established maximum contaminant levels (MCLS) or alternate contaminant levels (ACLs). In short, the UTL represents the upper end of the tolerance interval, which is calculated at a specified confidence level and coverage. For instance, a UTL with 95 percent coverage and a 95 percent confidence level represents a value which, with 95 percent confidence, will be exceeded less than 5 percent of the time.

In the present evaluation, we have calculated UTLs for the background well (MW-1S) and compared this value to each individual downgradient analytical result using a confidence level and coverage of 95 percent. When on-site wells exceed the background UTL consistently, it suggests that a significant difference from background may exist. While this is not a recommended technique for detection monitoring, we have applied background UTLs as a screening tool and as a supplement to the more rigorous statistical comparisons that follow.

Methods

Inherent in the calculation of a parametric UTL is the assumption of a normal (or log normal) data distribution. One of the tests for normality recommended in the 1992 Addendum to the EPA guidance document is the probability plot. When a data set is normally distributed, the corresponding probability plot is linear. However, for the background well, the analyses have a high percentage of nondetects for most parameters. Therefore, the probability plots appear to be nonlinear (see Appendix E-3). Fortunately, several methods are available to adjust the mean and standard deviation (used in the calculation of the UTL) based on various treatment of nondetects that allow the use of a parametric UTL. In a parametric UTL, the

magnitude of the analyses are considered, while in a nonparametric analysis, the data is ranked from highest to lowest and the UTL is calculated from the ranks. The choice of method depends on the percentage of nondetects in the population and on comparison of special probability plots designed to test the assumptions built into each model. Parametric methods for determination of the UTL are described below. When the percentage of nondetects is above 90 percent, the UTL is calculated using a nonparametric method employing the Poisson model. In the Poisson model, detected values are treated as "rare events," such that the probability of occurrence is low, but constant. The model takes into account both the frequency of occurrence of detected values as well as the magnitude. Since the Poisson model is nonparametric, a normal or log normal data distribution is not required.

When the frequency of detect is greater than 10 percent and data are normally or log normally distributed, either the Atchison or Cohen adjustment is recommended. In the Atchison method, nondetects are assumed to equal zero, and therefore are not considered in the data distribution. In the Cohen adjustment, nondetects are assumed to have finite values between zero and the detection limit. Experience at EPA and USGS (EPA 1992) have shown that, in general, when the frequency of detect (FOD) is between 10 and 50 percent, Atchison's method is more valid; while between 50 and 90 percent FOD, Cohen's method is more valid. However, this is only a rule of thumb that should be verified periodically using the detects-only and censored probability plot method described above.

Results

The frequencies of detection for each parameter in the background well (MW-1S) is provided in Table 7-1. For hexavalent chromium, cadmium, and toluene the FOD was less than 10 percent and the Poisson nonparametric method was used to calculate the UTL. Total chromium, copper, toluene, ethylbenzene, and total xylenes analyses were all between 10 and 50 percent FOD, suggesting that the Atchison adjustment should be employed before calculating the UTL. For trichloroethene (TCE), the data were both normally and log normally distributed (see Appendices E-2 and E-3) and the FOD was 100 percent; therefore, no adjustment was required, and the UTL was calculated directly.

The results of the UTL calculations and the comparison with each on-site well are presented in Table 7-2. Based on the number of analyses above the UTL for each on-site well, MW-3, MW-4, MW-7, MW-9, MW-11, MW-14S, MW-15S and MW-16 appear to differ from background with respect to the BTEX compounds. MW-4, MW-9, and MW-14S also appear to differ from background with respect to total chromium and copper. Note that the comparison of background UTLs to on-site wells described above is not definitive and will only be used in conjunction with the more in-depth statistical approaches that follow.

7.2 Comparison of Background and On-site Wells Overview

The recommended method for comparing on-site wells to background is the analysis of variance (ANOVA). There are two types of ANOVA C, parametric and nonparametric. In order to use the parametric ANOVA, the data set must be normally or log normally distributed and the group variances must be equal. For the nonparametric approach, neither normality or equal variances are required, however, slightly larger data sets are needed to use a nonparametric method compared to the parametric ANOVA. The minimum number of analyses for the nonparametric test is 9, while for the parametric test, only 6 are required (EPA 1989).

The first assumption (normal or log normal distribution) should be tested using either the Shapiro-Wilk or probability plot method when the sample size is 50 or less. In general, the Shapiro-Wilk test is much more stringent than the probability plot since the method tends to focus on the "tails" of the distribution.

The test for equal group variances suggested in the *Addendum to the Interim Final Guidance* (EPA 1992) is the box plot. In a box plot, the extent of each box represent the 25th and 75th percentiles of the data set. Therefore, a long box tends to represent a larger variance than a short box. EPA (1992) recommends using a nonparametric ANOVA if the length of the largest box is equal to or greater than three times that of the smallest box. Another suggested criteria for a parametric ANOVA is a combined FOD, for both the background and the on-site well under consideration, of greater than 50 percent.

Methods

Normality tests were performed only for TCE, since for the other parameters, the combined FOD was <50 percent, precluding the use of the parametric ANOVA method. Results of the probability plot, and Shapiro-Wilk tests are presented in Table 7-3, while the raw data are in Appendices E-2 and E-3, respectively. Due to the stringent nature of the Shapiro-Wilk test, less weight was given to this test than the probability plots when conflicting results were obtained. Based on Table 7-3, the TCE data are log normal in all wells except MW-3, MW-4, MW-6B, and MW-15S. The log normal data distribution is typical of environmental data sets where various degrees of dilution have occurred. The lack of normality or log normality precluded the use of a parametric ANOVA for wells MW-3 and MW-9.

In order to test the equal group variances assumption, box plots were constructed for TCE in each well (see Appendix E-4). The results indicate that the background box is less than a the length of the box for well MW-6B, indicating that this well cannot be compared to background using a parametric ANOVA. However, all other wells met the equal variance requirement.

A summary of the ANOVA method used is as follows:

MW-4, MW-11, MW-14S, MW-15S, and MW-16 for TCE C parametric ANOVA using 2 D.L. for nondetects

All other parameters and wells C nonparametric, Kruskal Wallis Mann Whitney U Test

Note that 2 D.L. was used when the FOD was greater than 85 percent in a single well.

Results

The results of the parametric ANOVA and nonparametric tests are included in Appendices E-5 and E-6, respectively, while a summary is provided in Table 7-4. An "R" indicates that the null hypothesis was rejected, or that the two wells are not the same, while an "A" indicates the null hypothesis was accepted. In general, the results are similar to the UTL comparisons, except well MW-16 appears to differ from background with respect to the BTEX compounds. The results for TCE were obtained using both the normal and log normal assumptions for comparative purposes. The results indicate that, regardless of the data distribution, only well MW-6B was the same as background with respect to TCE. The results have not changed since the July 2001 analysis.

Table 7-1 Percent of Total Samples in Shallow Wells Reported Above the Detection Limit Quarterly Data: January 1989 to October 2001 at Phibro-Tech, Inc.

Parameter	MW-1S	MW-3	MW-4	MW-6B	MW-7	MW-9	W-11	MW-14S	MW-15S	MW-16
Number Samples (n)	50	50	50	46	50	49	50	42	43	37
Metals (mg/L) (%)										
Hexavalent chromium	4.0	4.0	100.0	6.5	4.0	33.3	4.0	52.4	14.0	5.4
Total chromium	10.0	8.0	98.0	23.9	18.0	45.1	12.0	81.0	32.6	5.4
Cadmium	2.0	0	98.0	0	4.0	3.9	0	19.0	18.6	0
Copper	22.0	10.0	2 7 .5	4.3	48.0	9.8	22.0	59.5	11.6	16.2
Aromatics (μg/L) (%)										
Benzene	2.0	10.0	17.6	0	18.0	5.9	0	19.0	0	0
Toluene	8.2	14.3	32.0	35.6	14.3	32.0	38.8	17.1	23.8	16.7
Ethylbenzene	26.0	54.0	86.3	45.7	42.0	66.7	84.0	76.2	55.8	78.4
Total xylenes	28.0	42.0	80.4	41.3	30.0	51.0	68.0	52.4	48.8	43.2
Halocarbons (μg/L) (%)										
Trichloroethene	100.0	96.0	94.1	100.0	100.0	94.1	96.0	100.0	97.7	100.0

^{% =} Percent detected

Table 7-2 Definition of Upper Tolerance Levels in Background Shallow Wells Quarterly Data: January 1989 to October 2001 at Phibro-Tech. Inc.

	%	Tolerance	Upper				Upper T	olerance	Limit Exce	eded		
	Detected	Limit	Tolerance	MW-3	MW-4	MW-6B	MW-7	MW-9	MW-11	MW-14S	MW-15S	MW-16
Parameter	in Bkgd ¹	Method	Limit ²	49 ³	49	45	49	48	49	41	42	36
Metals (mg/L)												
Hexavalent chromium	4.0	Р	1.00	-	49 4	-	-	9	-	1	-	-
Total chromium	10.0	Α	0.043	2	51 (1)	1	2	19	-	20 (1)	1	-
Cadmium	2.0	Р	0.5	-	14	-	-	-	-	-	-	-
Copper	22.0	Α	0.030	4 (1)	14 (8)	3 (1)	20 (2)	5 (1)	8 (1)	16	4	5
Aromatics (μg/L)												
Benzene	2.0	Р	24.5	3 (3) 5	13 (12)	-	-	14 (14)	9 (9)	1 (1)	-	3 (3)
Toluene	8.0	Р	1.22	21 (14)	42 (26)	14 (1)	17(11)	40 (24)	40 (21)	18 (12)	11 (2)	24 (19)
Ethylbenzene	26.0	Α	2.21	22 (5)	46 (3)	15 (1)	18 (6)	43 (10)	45 (4)	30 (1)	22	30 (3)
Total xylenes	28.0	Α	4.64	18 (6)	48 (4)	15 (1)	11 (4)	42 (17)	38 (10)	19 (4)	11	16 (7)
Halocarbons (μg/L)												
Trichloroethene	100.0	Т	20.40	39 (1)	51 (3)	10	48	50 (3)	48	38	3	34

MW-1S is background shallow well, n = 50
In ppm or ppb, as noted for groups
Number of samples collected at corresponding well
Number of samples that exceed upper tolerance level at corresponding well
(6) number of samples exceeding limit that are reported as ND

None of samples exceeded the upper tolerance limit
Poisson

A = Atchison adjusted
T = Unadjusted limit

Table 7-3 Summary of the Data Distribution for Shallow Wells Using Three Different Methods, Quarterly Data: January 1989 to October 2001 at Phibro-Tech, Inc.

		Wi	th NDs
Well	Parameter	P Plot	Shapiro-Wilk
MW-1S	Copper	R	R
MW-1S	Ethylbenzene	R	R
MW-1S	Total chromium	R	R
MW-1S	Toluene	R	R
MW-1S	Total xylenes	R	R
MW-1S	TCE	N/L	N
MW-11	TCE	L	R
MW-14S	TCE	L	L
MW-15S	TCE	N	R
MW-16	TCE	L	L
MW-3	TCE	N	L
MW-4	TCE	N	N
MW-6B	TCE	N	R
MW-7	TCE	N/L	R
MW-9	TCE	R	R

MW-1S = Background shallow well
L = Lognormal
N = Normal

R

 Neither normal or lognormal
 Normal or lognormal distribution can be used N/L

Table 7-4 Comparison of Background and On Site Shallow Wells Quarterly Data: January 1989 to October 2001 at Phibro-Tech. Inc.

Parameter	MW-3	MW-4	MW-6B	MW-7	MW-9	MW-11	MW-14S	MW-15S	MW-16
Metals (mg/L)	•		•	•					
Hexavalent chromium 1	Α	R	Α	Α	R	Α	R	Α	Α
Total chromium 1	Α	R	R	Α	R	Α	R	R	Α
Cadmium 1	Α	R	Α	Α	Α	Α	Α	Α	Α
Copper 1	Α	Α	Α	R	Α	Α	R	Α	Α
Aromatics (μg/L)									
Benzene 1	R	R	Α	R	R	R	R	Α	R
Toluene 1	R	R	R	R	R	R	R	Α	R
Ethylbenzene 1	R	R	R	R	R	R	R	B	R
Total xylenes 1	R	R	Α	Α	R	R	R	Α	R
Halocarbons (μg/L)									
Trichloroethene 2	R ³	R⁴/R⁵	A 3	В³	R/R	В³	R/R	R/R	R/R

Background to onsite comparison by Mann Whitney U Method, using D.L. for ND, at 95 percent confidence level

- Background to onsite comparison by one way ANOVA Method using 1/2 D.L. for ND
- Nonparametric comparison used for TCE
- ⁴ Normal Distribution used in comparison
- ⁵ Log normal Distribution used in comparison
- A Null Hypothesis, that means are equal, is accepted
- R Null Hypothesis, that means are equal, is rejected
- R/R Null Hypothesis, rejected using parametric (top letter) and nonparametric (bottom letter) tests

Section 8

Assessment of Quarterly Groundwater Monitoring Program Status

In the October 1990 groundwater monitoring report, changes in the quarterly groundwater sampling program were proposed. These changes were first implemented during the April 1991 sampling event and included reducing the number of wells sampled and parameters analyzed in each well. The current groundwater sampling program will only be used as an interim groundwater sampling program, until EPA has selected a remediation alternative from the Corrective Measures Study (CMS). Based on over 16 years of quarterly monitoring at the site, off-site migration of the soluble metals plume has not been observed.

The analytical parameters for the October 2001 quarterly monitoring were as follows:

Wells	Volatile Organic Compounds (EPA 8260)	Chromium, Cadmium, Copper	Hexavalent Chromium	рН	1,4-Dioxane
MW-01S, MW-01D	X, X	X, X	X, X	X, X	X,
MW-03, MW-04A	X, X	X, X	X, X	X, X	, X
MW-11 MW-06B	X, X	X, X	X, X	X, X	X,
MW-06D, MW-07	X, X	X, X	X, X	X, X	X,
MW-09, MW-04	X, X	X, X	X, X	X, X	X, X
MW-14S, MW-15S	X, X	X, X	X, X	X, X	,
MW-15D, MW-16	X, X	X, X	X, X	X, X	X,

Beginning with the January 1997 sampling event, EPA Method 8010/8020 was replaced with EPA Method 8260. This change was requested by the analytical laboratory, which no longer performs 8010/8020 analysis. Methyl-tertiary-butyl-ether (MTBE) analysis was performed once, in January 1997. Since there were no detections of MTBE in any of the groundwater samples, this analysis was discontinued. Starting with the October 2000 sampling event, the analytical method for hexavalent chromium was changed from EPA Method 7196 to 7199. DTSC requested that selected wells be analyzed for 1,4-Dioxane in July 2001 and October 2001.

Statistical analysis was historically conducted annually. Beginning with the October 1993 sampling event, statistical analysis has been performed on a quarterly basis, as requested by DTSC.

During 2000, three sampling events were performed (January, April and October). Sampling and reporting frequency was changed from quarterly to semi-annual after the April 2000 sampling event. However, quarterly groundwater monitoring resumed in April 2001. During the October 2001 event, 14 on-site wells were sampled and analyzed for volatile organics using EPA Method 8260, chromium, cadmium, copper, hexavalent chromium, and pH. The water levels at the 14 wells sampled, in addition to the remaining unsampled wells (with the exception of MW-02), will also be measured.

Section 9 References

Camp Dresser & McKee Inc., October 2000, Semi-Annual Sampling Report and 2000 Annual Groundwater Monitoring Report, February 27, 2001.
, Groundwater Modeling Study, Southern California Chemical, January 1993.
, RCRA Facility Investigation Work Plan Addendum, Southern California Chemical, February 13, 1992, Revised March 6, 1992.
, RCRA Facility Investigation Report, Southern California Chemical, December 6, 1991.
, RCRA Facility Investigation Work Plan, Southern California Chemical, June 26, 1990.
, Current Conditions Report, Southern California Chemical, June 8, 1990.
City of Santa Fe Springs, 1996 Annual Water Quality Report, 1999.
J.H. Kleinfelder & Associates, Quality Assurance Project Plan, Southern California Chemical, May 1988.
, Draft Environmental Assessment, Southern California Chemical, January 1986.

Appendix A General Analytical Detection Limits

TABLE A-1 PHIBRO-TECH, INC. HEAVY METALS AND INORGANICS ANALYSIS Typical Detection Limits

Method Number	Analytical Parameter	Detection Limit	Units
EPA 6010-L	Antimony	0.06	mg/L
EPA 6010-L	Barium	0.00	mg/L
EPA 6010-L	Beryllium	0.002	mg/L
EPA 6010-L	Cadmium	0.002	
			mg/L.
EPA 6010-L	Chromium	0.01	mg/L
EPA 6010-L	Cobalt	0.01	mg/L
EPA 6010-L	Copper	0.02	mg/L
EPA 6010-L	Lead	0.05	mg/L
EPA 6010-L	Molybdenum	0.02	mg/L
EPA 6010-L	Nickel	0.04	mg/L
EPA 6010-L	Silver	0.01	mg/L
EPA 6010-L	Thallium	0.5	mg/L
EPA 6010-L	Tin	0.1	mg/L
EPA 6010-L	Vanadium	0.01	mg/L
EPA 6010-L	Zinc	0.02	mg/L
EPA 7199	Chromium, Hexavalent	0.002	mg/L
	Arsenic	0.002	
EPA 7061-L			mg/L
EPA 9012	Cyanide, Total	0.01	mg/L
EPA 7470	Mercury	0.001	mg/L
EPA 300.0	Chloride	5	mg/L
EPA 300.0	Nitrate	0.2	mg/L
EPA 7741-L	Selenium	0.1	mg/L
EPA 376.2	Sulfide, as Sulfur	1.2	mg/L

TABLE A-2 PHIBRO-TECH, INC. VOLATILE ORGANIC COMPOUNDS Typical Detection Limits

Method Number	Analytical Parameter	Detection Limit	Units
EPA 8260	Benzene	0.5	μg/L
EPA 8260	Toluene	1.0	μg/L
EPA 8260	Ethylbenzene	1.0	μg/L
EPA 8260	Xylenes, Total	1.0	μg/L
EPA 8260	Chloromethane	1.0	μg/L
EPA 8260	Bromomethane	1.0	μg/L
EPA 8260	Vinyl Chloride	1.0	μg/L
EPA 8260	Chloroethane	1.0	μg/L
EPA 8260	Methylene Chloride	1.0	μg/L
EPA 8260	Trichlorofluoromethane	1.0	μg/L
EPA 8260	1,1-Dichloroethene	1.0	μg/L
EPA 8260	1,1-Dichloroethane	1.0	μg/L
EPA 8260	trans-1,2-Dichloroethene	1.0	μg/L
EPA 8260	Chloroform	1.0	μg/L
EPA 8260	1,2-Dichloroethane	1.0	μg/L.
EPA 8260	1,1,1-Trichloroethane	1.0	μg/L
EPA 8260	Carbon Tetrachloride	1.0	μg/L
EPA 8260	Bromodichloromethane	1.0	μg/L
EPA 8260	1,2-Dichloropropane	1.0	μg/L
EPA 8260	trans-1,3-Dichloropropene	1.0	μg/L
EPA 8260	Trichloroethene	1.0	μg/L
EPA 8260	Dibromochloromethane	1.0	μg/L
EPA 8260	1,1,2-Trichloroethane	1.0	μg/L
EPA 8260	cis-1,3-Dichloropropene	1.0	μg/L
EPA 8260	2-Chloroethylvinyl ether	1.0	μ g/L
EPA 8260	Bromoform	1.0	μg/L
EPA 8260	Tetrachloroethene	1.0	μg/L
EPA 8260	1,1,2,2-Tetrachloroethane	1.0	μg/L
EPA 8260	Chlorobenzene	1.0	μg/L
EPA 8260	1,2-Dichlorobenzene	1.0	μ g/L
EPA 8260	1,3-Dichlorobenzene	1.0	μg/L
EPA 8260	1,4-Dichlorobenzene	1.0	μg/L

Appendix B Historical Sampling Results

			META	ALS			VOLA?	ILE ORGANIC	COMPOUNDS	
Monitor	Groundwater	Hexavalent	Total	Cadmium	Copper	Benzene	Toluene	Ethyl-	Total	Trichloroethene
Well	Elevation	Chromium	Chromium	1			i	Benzene	Xylenes	
No. / Date	(Feet MSL)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)
MW - 1S										
Jan-89	96.74	ND < 0.01	0.014	ND < 0.003	ND < 0.009	ND < 0.01	ND < 0.0	ND < 0.0	ND < 0.0	19
Apr-89	100.45	ND < 0.05	0.1	ND < 0.01	ND < 0.02	ND < 0.7	ND < 1.0	ND < 1.0	3.0	23
Jul-89	99.00	ND < 0.05	0.06	0.01	0.03	ND < 0.7	ND < 1.0	ND < 1.0	ND < 1.0	13
Oct-89	96.76	ND < 0.05	ND < 0.02	ND < 0.01	ND < 0.05	ND < 0.5	ND < 1.0	ND < 1.0	ND < 1.0	12
Jan-90	97.73	ND < 0.02	ND < 0.01	ND < 0.01	ND < 0.02	ND < 0.5	ND < 0.5	ND < 0.5	ND < 1.0	16
Apr-90	99.30	ND < 0.02	0.02	ND < 0.0050	0.02	ND < 2.5	ND < 2.5	ND < 2.5	ND < 5.0	20
Jul-90	100.83	ND < 0.02	ND < 0.01	ND < 0.01	0.03	ND < 0.5	ND < 0.5	ND < 0.5	ND < 1.0	18
Oct-90	99.81	ND < 0.02	ND < 0.01	ND < 0.0050	0.023	ND < 0.5	ND < 1.0	ND < 1.0	ND < 1.0	18
Jan-91	99.19	ND < 0.02	ND < 0.01	ND < 0.0050	ND < 0.02	ND < 0.5	ND < 1.0	ND < 1.0	ND < 1.0	26
Apr-91	101.95	ND < 0.02	ND < 0.01	ND < 0.0050	ND < 0.02	ND < 0.5	ND < 1.0	ND < 1.0	ND < 1.0	22
Jul-91	102.94	ND < 0.02	ND < 0.01	ND < 0.0050	ND < 0.02	ND < 0.5	ND < 1.0	ND < 1.0	ND < 1.0	17
Oct-91	102.33	ND < 0.02	0.01	ND < 0.0050	0.02	ND < 0.5	ND < 1.0	ND < 1.0	ND < 1.0	14
Jan-92	104.60	0.10	0.0081	ND < 0.0027	0.04	ND < 1	1.5	1.2	4.3	13
Apr-92	107.28	ND < 0.02	ND < 0.01	ND < 0.0050	ND < 0.02	ND < 0.5	ND < 0.5	ND < 0.5	ND < 0.5	9.9
Jul-92	107.87	ND < 0.02	ND < 0.01	ND < 0.0050	ND < 0.02	ND < 0.5	ND < 1.0	ND < 1.0	ND < 1.0	10
Oct-92	105.53	ND < 0.02	ND < 0.01	ND < 0.0050	0.035	0.95	ND < 1.0	ND < 1.0	ND < 1.0	11
Jan-93	109.82	ND < 0.02	ND < 0.01	ND < 0.0050	ND < 0.02	ND < 0.5	2.2	1.3	5.6	9.2
Apr-93	116.01	ND < 0.02	ND < 0.01	ND < 0.0050	ND < 0.02	ND < 0.5	ND < 1.0	ND < 1.0	ND < 1.0	5.7
Jul-93	116.59	ND < 0.02	ND < 0.01	ND < 0.0050	ND < 0.02	ND < 0.5	1.7	1.7	4.0	11
Oct-93	116.50	ND < 0.02	ND < 0.01	ND < 0.0050	ND < 0.02	ND < 0.5	ND < 1.0	2.2	4.3	14
Jan-94	116.60	ND < 0.02	ND < 0.01	ND < 0.0050	ND < 0.02	ND < 0.5	ND < 1.0	ND < 1.0	ND < 1.0	9.3
Apr-94	117.10	ND < 0.02	ND < 0.01	ND < 0.0050	ND < 0.02	ND < 0.5	ND < 1.0	ND < 1.0	ND < 1.0	14
Jul-94	117.80	ND < 0.02	ND < 0.01	ND < 0.0050	ND < 0.02	ND < 0.5	ND < 1.0	ND < 1.0	ND < 1.0	7.9
Oct-94	112.23	ND < 0.02	ND < 0.01	ND < 0.0050	ND < 0.02	ND < 0.5	ND < 1.0	ND < 1.0	5.8	13
Jan-95	113.59	ND < 0.02	ND < 0.01	ND < 0.0050	ND < 0.02	ND < 0.5	ND < 1.0	ND < 1.0	ND < 1.0	5.2
Apr-95	118.78	ND < 0.02	0.0029	ND < 0.01	ND < 0.02	ND < 0.5	ND < 1.0	1.3	1.0	4.4
Jul-95	120.06	ND < 0.02	ND < 0.01	ND < 0.0050	ND < 0.02	ND < 0.5	1.2	3.5	6.1	6.2
Oct-95	116.48	ND < 0.02	ND < 0.01	ND < 0.0050	ND < 0.02	ND < 0.5	ND < 1.0	1.7	3.9	15
Jan-96	114.84	ND < 0.02	ND < 0.01	ND < 0.0050	ND < 0.02	ND < 0.5	ND < 1.0	1.7	5.1	8.4
Apr-96	118.03	ND < 0.02	ND < 0.01	ND < 0.0050	ND < 0.02	ND < 0.5	ND < 1.0	3.4	4.9	2.9
Jul-96	117.42	ND < 0.01	ND < 0.01	ND < 0.0050	ND < 0.02	ND < 0.5	ND < 1.0	2.2	3.7	9.7
Oct-96	113.85	ND < 0.01	ND < 0.01	ND < 0.0050	ND < 0.02	ND < 0.5	ND < 1.0	2.1	2.8	16
Jan-97	115.73	ND < 0.02	ND < 0.01	ND < 0.0050	0.022	ND < 0.5	ND < 1.0	ND < 1.0	2.0	6.0
Apr-97	118.21	ND < 0.02	ND < 0.01	ND < 0.0050	ND < 0.02	ND < 0.5	ND < 1.0	1.4	1.2	15
Jul-97	118.18	ND < 0.02	ND < 0.01	ND < 0.0050	ND < 0.02	ND < 0.5	ND < 1.0	ND < 1.0	ND < 1.0	14
Oct-97	114.82	ND < 0.02	ND < 0.01	ND < 0.0050	0.023	ND < 0.5	ND < 1.0	ND < 1.0	ND < 1.0	12
Jan-98	113.23	ND < 0.02	ND < 0.01	ND < 0.0050	ND < 0.02	ND < 0.5	ND < 1.0	ND < 1.0	ND < 1.0	12
Арг-98	118.16	ND < 0.02	ND < 0.01	ND < 0.0050	0.021	ND < 0.5	ND < 1.0	ND < 1.0	ND < 1.0	14
Jul-98	119.12	ND < 0.02	ND < 0.01	ND < 0.0050	ND < 0.02	ND < 0.5	ND < 1.0	ND < 1.0	ND < 1.0	14
Oct-98	116.57	ND < 0.02	ND < 0.01	ND < 0.0050	ND < 0.02	ND < 0.5	ND < 1.0	ND < 1.0	ND < 1.0	7.8
Jan-99	113.94	ND < 0.01	ND < 0.01	ND < 0.0050	ND < 0.02	ND < 0.5	ND < 1.0	2.0	ND < 1.0	10
Apr-99	114.01	ND < 0.025	ND < 0.01	ND < 0.0050	ND < 0.025	ND < 1.0	ND < 1.0	ND < 1.0	ND < 2.0	7.2
Jul-99	113.62	ND < 0.020	ND < 0.010	ND < 0.0050	0.052	ND < 1.0	ND < 1.0	ND < 1.0	ND < 1.0	9.1
Oct-99	106.70	ND < 0.010	ND < 0.010	ND < 0.0050	ND < 0.025	ND < 1.0	ND < 1.0	ND < 1.0	ND < 2.0	9,1
Jan-00	102.73	ND < 0.020	ND < 0.010	ND < 0.0050	ND < 0.025	ND < 1.0	ND < 1.0	ND < 1.0	ND < 1.0	9.9
Apr-00	108.83	ND < 0.010	ND < 0.010	ND < 0.0050	ND < 0.025	ND < 1.0	ND < 1.0	ND < 1.0	ND < 1.0	16
Oct-00	109.09	ND < 0.020	ND < 0.010	ND < 0.0050	ND < 0.025	ND < 1.0	ND < 1.0	ND < 1.0	ND < 1.0	8.9
Apr-01	111.58	ND < 0.0020	ND < 0.010	ND < 0.0050	ND < 0.025	ND < 1.0	ND < 1.0	ND < 1.0	ND < 1.0	13

			MET					ILE ORGANIC C		
Monitor	Groundwater	Hexavalent	Total	Cadmium	Copper	Benzene	Toluene	Ethyl-	Total	Trichloroethen
Well	Elevation	Chromium	Chromium				1	Benzene	Xylenes	
lo. / Date	(Feet MSL)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(ug/L)	(ນg/L)	(ug/L)	(ug/L)	(ug/L)
W - 3										
Jan-89	95.02	ND < 0.01	0.014	0.003	ND < 0.009	7.4	17.0	4900.0	1500.0	74
Apr-89	99.29	ND < 0.5	0.07	ND < 0.01	ND < 0.02	ND < 50	ND < 50.0	1200.0	60.0	110
Jul-89	98.21	ND < 0.5	0.06	ND < 0.01	ND < 0.02	ND < 7	ND < 10.0	ND < 10.0	ND < 10.0	120
Oct-89	94.75	ND < 0.5	ND < 0.02	ND < 0.01	ND < 0.05	ND < 50	ND < 100.0	1600.0	150.0	ND < 100
Jan-90	95.98	ND < 0.02	ND < 0.01	ND < 0.01	ND < 0.02	ND < 5	ND < 5.0	110.0	ND < 10.0	65
Apr-90	97.72	ND < 0.02	ND < 0.01	ND < 0.005	ND < 0.02	ND < 50	ND < 50.0	2100.0	720.0	74
_Jul-90	99.27	ND < 0.02	ND < 0.01	ND < 0.01	ND < 0.02	ND < 5	ND < 5.0	ND < 5.0	ND < 10.0	130
Oct-90	97.29	ND < 0.02	ND < 0.01	ND < 0.005	ND < 0.02	9	2.0	ND < 1.0	ND < 1.0	130
Jan-91	97.69	ND < 0.02	ND < 0.01	ND < 0.005	ND < 0.02	ND < 0.5	ND < 1.0	ND < 1.0	ND < 1.0	38
Apr-91	99.81	ND < 0.02	ND < 0.01	ND < 0.005	ND < 0.02	ND < 0.5	ND < 1.0	ND < 1.0	ND < 1.0	27
Jul-91	101.63	ND < 0.02	ND < 0.01	ND < 0.005	ND < 0.02	ND < 0.5	ND < 1.0	ND < 1.0	ND < 1.0	28
Oct-91	100.99	ND < 0.02	ND < 0.01	ND < 0.005	0.03	ND < 0.5	ND < 1.0	ND < 1.0	ND < 1.0	71
Jan-92	103.44	ND < 0.5	0.0081	ND < 0.0027	0.02	ND < 1	ND < 1.0	ND < 1.0	4.0	76
Apr-92	106.04	ND < 0.02	ND < 0.02	ND < 0.005	ND < 0.02	ND < 0.5	ND < 1.0	ND < 1.0	ND < 5.0	25
Jul-92	106.61	ND < 0.02	ND < 0.02	ND < 0.005	0.13	ND < 0.5	ND < 1.0	ND < 1.0	ND < 1.0	76
Oct-92	103.93	ND < 0.02	ND < 0.02	ND < 0.005	0.038	0.52	ND < 1.0	ND < 1.0	ND < 1.0	130
Jan-93	107.28	ND < 0.02	ND < 0.01	ND < 0.005	0.096	ND < 2.5	ND < 5.0	ND < 5.0	ND < 5.0	84
Apr-93	115.17	ND < 0.02	ND < 0.01	ND < 0.005	ND < 0.02	ND < 0.5	ND < 1.0	ND < 1.0	ND < 1.0	12
Jul-93	115.92	ND < 0.02	ND < 0.01	ND < 0.005	ND < 0.02	ND < 0.5	3.3	2.6	5.9	16
Oct-93	115.67	ND < 0.02	ND < 0.01	ND < 0.005	ND < 0.02	ND < 0.5	ND < 1.0	2.6	4.8	17
Jan-94	115.59	ND<0.02/0.4**	ND < 0.01	ND < 0.005	ND < 0.02	ND < 0.5	ND < 1.0	ND < 1.0	ND < 1.0	10
Apr-94	116.33	ND < 0.02	ND < 0.01	ND < 0.005	ND < 0.02	ND < 0.5	ND < 1.0	ND < 1.0	ND < 1.0	15
Jul-94	116.91	ND < 0.02	ND < 0.01	ND < 0.005	ND < 0.02	ND < 0.5	ND < 1.0	ND < 1.0	ND < 1.0	26
Oct-94	110.85	ND < 0.02	ND < 0.01	ND < 0.005	ND < 0.02	1.2	3.5	1.5	12.0	76
Jan-95	111.83	ND < 0.02	ND < 0.01	ND < 0.005	ND < 0.02	ND < 0.5	ND < 1.0	ND < 1.0	ND < 1.0	72
Apr-95	117.83	ND < 0.02	0.0023	ND < 0.001	ND < 0.02	ND < 0.5	ND < 1.0	1.3	ND < 1.0	57
Jul-95	119.20	ND < 0.02	ND < 0.01	ND < 0.005	ND < 0.02	ND < 0.5	2.0	5.2	8.8	9.5
Oct-95	115.45	ND < 0.02	ND < 0.01	ND < 0.005	ND < 0.02	ND < 0.5	ND < 1.0	1.7	3.3	30
Jan-96	113.41	ND < 0.02	ND < 0.01	ND < 0.005	ND < 0.02	ND < 0.5	ND < 1.0	ND < 1.0	5.1	26
Apr-96	116.73	ND < 0.02	ND < 0.01	ND < 0.005	ND < 0.02	ND < 0.5	ND < 1.0	2.6	3.6	46
Jul-96	116.33	ND < 0.01	ND < 0.01	ND < 0.005	ND < 0.02	ND < 0.5	1.8	9.0	12.0	17
Oct-96	112.45	ND < 0.01	ND < 0.01	ND < 0.005	ND < 0.02	ND < 0.5	ND < 1.0	5.4	6.2	21
Jan-97	114.19	ND < 0.02	ND < 0.01	ND < 0.005	ND < 0.02	ND < 0.5	2.6	1.1	4.2	28
Apr-97	117.13	ND < 0.02	ND < 0.01	ND < 0.005	ND < 0.02	ND < 0.5	4.3	2.1	3.0	13
Jul-97	117.18	ND < 0.02	ND < 0.01	ND < 0.005	ND < 0.02	ND < 0.5	ND < 1.0	2.5	3.7	13
Oct-97	113.60	ND < 0.02	ND < 0.01 ND < 0.01	ND < 0.005 ND < 0.005	ND < 0.02	0.57	ND < 1.0	1.7	1.2	24
Jan-98	111.68	ND < 0.02			ND < 0.02	ND < 0.5	ND < 1.0	1.3	ND < 1.0	25
Apr-98	116.82	ND < 0.02	ND < 0.01	ND < 0.005	ND < 0.02	ND < 0.5	ND < 1.0	ND < 1.0	ND < 1.0	18
Jul-98	118.02	ND < 0.02	ND < 0.01 ND < 0.01	ND < 0.005 ND < 0.005	ND < 0.02 ND < 0.02	ND < 0.5 ND < 0.5	ND < 1.0	ND < 1.0	ND < 1.0	25
Oct-98	115.40	ND < 0.02 ND < 0.02	ND < 0.01	ND < 0.005	ND < 0.02	ND < 0.5	ND < 1.0	ND < 1.0	ND < 1.0 ND < 1.0	24
Jan-99	112.48		ND < 0.01	ND < 0.005	ND < 0.025		ND < 1.0 ND < 1.0	2.3	ND < 1.0	26
Apr-99	112.49	ND < 0.025	ND < 0.010	ND < 0.005		ND < 1.0		1.1		21
Jul-99	112.31	ND < 0.020			ND < 0.025	ND < 1.0	ND < 1.0	1.3	ND < 1.0	43
Oct-99	104.42	ND < 0.010	0.017	ND < 0.0050	ND < 0.025	ND < 5.0	ND < 5.0	200	ND < 10	150
Jan-00	100.50	ND < 0.020	ND < 0.010	ND < 0.0050	ND < 0.025	ND < 2.5	ND < 2.5	54	70	170
Apr-00	107.20	ND < 0.010	ND < 0.010	ND < 0.0050	ND < 0.025	ND < 2.5	ND < 2.5	65	2.5	170
Oct-00	107.46	ND < 0.020	ND < 0.010	ND < 0.0050	ND < 0.025	ND < 1.0	ND < 1.0	2	ND < 1.0	43
Apr-01	110.35	0.0007	0.017	ND < 0.0050	ND < 0.025	ND <2.0	ND < 2.0	121	3.1	150

Well No. / Date WW - 4 Jan-89 Apr-89 Jul-89 Jan-90 Apr-90 Jul-90 Oct-90 Jan-91 Apr-91 Jul-91 Oct-91	Groundwater Elevation (Feet MSL) 95.21 99.19 98.19 94.92 95.87 97.50 99.20 98.33 97.68 100.50	Hexavalent Chromium (mg/L) 33.0 43.0 120.0 110.0 109.0 81.7 100.0 58.9 49.4	META Total Chromium (mg/L) 400.0 100.0 98.0 120.0 95.1 80.7 101.0 48.4 65.3	Cadmium (mg/L) 0.028 0.05 0.08 0.07 0.12 0.13 0.35 0.23	Copper (mg/L) ND < 0.009 0.02 0.06 ND < 0.05 ND < 0.02 0.02 ND < 0.02	ND < 0.5 ND < 0.5 ND < 14 ND < 0.5 ND < 12 ND < 12 ND < 10	Toluene (ug/L) 10.0 23.0 ND < 20.0 ND < 1.0 ND < 12.0	Ethyl- Benzene (ug/L) 15.0 15.0 140.0 ND < 1.0 ND < 12.0	Total Xylenes (ug/L) 29.0 50.0 40.0 ND < 1.0 ND < 25.0	Trichloroethene (ug/L) 120 280 290 250
Well No. / Date WW - 4 Jan-89 Apr-89 Jul-89 Jan-90 Apr-90 Jul-90 Oct-90 Jan-91 Apr-91 Jul-91 Oct-91	95.21 95.21 99.19 98.19 94.92 95.87 97.50 99.20 98.33 97.68 100.50	33.0 43.0 120.0 110.0 109.0 81.7 100.0 58.9 49.4 23.8	Chromium (mg/L) 400.0 100.0 98.0 120.0 95.1 80.7 101.0 48.4 65.3	(mg/L) 0.028 0.05 0.08 0.07 0.12 0.13 0.35 0.23	(mg/L) ND < 0.009 0.02 0.06 ND < 0.05 ND < 0.05 ND < 0.02 0.02 0.02 ND < 0.02	(ug/L) ND < 0.5 ND < 5 ND < 14 ND < 0.5 ND < 12	(ug/L) 10.0 23.0 ND < 20.0 ND < 1.0	Benzene (ug/L) 15.0 15.0 140.0 ND < 1.0	29.0 50.0 40.0 ND < 1.0	120 280 290
No. / Date MW - 4 Jan-89 Apr-89 Jul-89 Oct-89 Jan-90 Apr-90 Jul-90 Oct-90 Jan-91 Apr-91 Jul-91	95.21 99.19 98.19 94.92 95.87 97.50 99.20 98.33 97.68 100.50 101.47	(mg/L) 33.0 43.0 120.0 110.0 109.0 81.7 100.0 58.9 49.4 23.8	(mg/L) 400.0 100.0 98.0 120.0 95.1 80.7 101.0 48.4 65.3	0.028 0.05 0.08 0.07 0.12 0.13 0.35	ND < 0.009 0.02 0.06 ND < 0.05 ND < 0.02 0.02 ND < 0.02	ND < 0.5 ND < 5 ND < 14 ND < 0.5 ND < 12	10.0 23.0 ND < 20.0 ND < 1.0	15.0 15.0 140.0 ND < 1.0	(ug/L) 29.0 50.0 40.0 ND < 1.0	120 280 290
MW - 4 Jan-89 Apr-89 Jul-89 Oct-89 Jan-90 Apr-90 Jul-90 Oct-90 Jan-91 Apr-91 Jul-91 Oct-91	95.21 99.19 98.19 94.92 95.87 97.50 99.20 98.33 97.68 100.50	33.0 43.0 120.0 110.0 109.0 81.7 100.0 58.9 49.4 23.8	400.0 100.0 98.0 120.0 95.1 80.7 101.0 48.4 65.3	0.028 0.05 0.08 0.07 0.12 0.13 0.35	ND < 0.009 0.02 0.06 ND < 0.05 ND < 0.02 0.02 ND < 0.02	ND < 0.5 ND < 5 ND < 14 ND < 0.5 ND < 12	10.0 23.0 ND < 20.0 ND < 1.0	15.0 15.0 140.0 ND < 1.0	29.0 50.0 40.0 ND < 1.0	120 280 290
Jan-89 Apr-89 Jul-89 Oct-89 Jan-90 Apr-90 Jul-90 Oct-90 Jan-91 Apr-91 Jul-91 Oct-91	99.19 98.19 94.92 95.87 97.50 99.20 98.33 97.68 100.50 101.47	43.0 120.0 110.0 109.0 81.7 100.0 58.9 49.4 23.8	100.0 98.0 120.0 95.1 80.7 101.0 48.4 65.3	0.05 0.08 0.07 0.12 0.13 0.35 0.23	0.02 0.06 ND < 0.05 ND < 0.02 0.02 ND < 0.02	ND < 5 ND < 14 ND < 0.5 ND < 12	23.0 ND < 20.0 ND < 1.0	15.0 140.0 ND < 1.0	50.0 40.0 ND < 1.0	280 290
Apr-89 Jul-89 Oct-89 Jan-90 Apr-90 Jul-90 Oct-90 Jan-91 Apr-91 Jul-91 Oct-91	99.19 98.19 94.92 95.87 97.50 99.20 98.33 97.68 100.50 101.47	43.0 120.0 110.0 109.0 81.7 100.0 58.9 49.4 23.8	100.0 98.0 120.0 95.1 80.7 101.0 48.4 65.3	0.05 0.08 0.07 0.12 0.13 0.35 0.23	0.02 0.06 ND < 0.05 ND < 0.02 0.02 ND < 0.02	ND < 5 ND < 14 ND < 0.5 ND < 12	23.0 ND < 20.0 ND < 1.0	15.0 140.0 ND < 1.0	50.0 40.0 ND < 1.0	280 290
Jul-89 Oct-89 Jan-90 Apr-90 Jul-90 Oct-90 Jan-91 Apr-91 Jul-91 Oct-91	98.19 94.92 95.87 97.50 99.20 98.33 97.68 100.50 101.47	120.0 110.0 109.0 81.7 100.0 58.9 49.4 23.8	98.0 120.0 95.1 80.7 101.0 48.4 65.3	0.08 0.07 0.12 0.13 0.35 0.23	0.06 ND < 0.05 ND < 0.02 0.02 ND < 0.02	ND < 14 ND < 0.5 ND < 12	ND < 20.0 ND < 1.0	140.0 ND < 1.0	40.0 ND < 1.0	290
Oct-89 Jan-90 Apr-90 Jul-90 Oct-90 Jan-91 Apr-91 Jul-91 Oct-91	94.92 95.87 97.50 99.20 98.33 97.68 100.50 101.47	110.0 109.0 81.7 100.0 58.9 49.4 23.8	120.0 95.1 80.7 101.0 48.4 65.3	0.07 0.12 0.13 0.35 0.23	ND < 0.05 ND < 0.02 0.02 ND < 0.02	ND < 0.5 ND < 12	ND < 1.0	ND < 1.0	ND < 1.0	
Jan-90 Apr-90 Jul-90 Oct-90 Jan-91 Apr-91 Jul-91 Oct-91	95.87 97.50 99.20 98.33 97.68 100.50	109.0 81.7 100.0 58.9 49.4 23.8	95.1 80.7 101.0 48.4 65.3	0.12 0.13 0.35 0.23	ND < 0.02 0.02 ND < 0.02	ND < 12				
Apr-90 Jul-90 Oct-90 Jan-91 Apr-91 Jul-91 Oct-91	97.50 99.20 98.33 97.68 100.50 101.47	81.7 100.0 58.9 49.4 23.8	80.7 101.0 48.4 65.3	0.13 0.35 0.23	0.02 ND < 0.02				ND < 25 01	220
Jul-90 Oct-90 Jan-91 Apr-91 Jul-91 Oct-91	99.20 98.33 97.68 100.50 101.47	100.0 58.9 49.4 23.8	101.0 48.4 65.3	0.35 0.23	ND < 0.02		ND < 10.0	ND < 10.0	ND < 20.0	280
Oct-90 Jan-91 Apr-91 Jul-91 Oct-91	98.33 97.68 100.50 101.47	58.9 49.4 23.8	48.4 65.3	0.23		ND < 50	ND < 50.0	1600.0	170.0	320
Jan-91 Apr-91 Jul-91 Oct-91	97.68 100.50 101.47	49.4 23.8	65.3		0.022	ND < 0.5	17.0	230.0	650.0	250
Apr-91 Jul-91 Oct-91	100.50 101.47	23.8		0.26	ND < 0.02	ND < 0.5	ND < 1.0	ND < 1.0	1200.0	180
Jul-91 Oct-91	101.47		18.4	0.076	ND < 0.02	ND < 0.5	ND < 1.0	730.0	ND < 1.0	170
Oct-91		39.1	78.5	0.61	ND < 0.02	ND < 0.5	16000.0	6700.0	18000	190
	100.91	42.0	40.8	0.21	ND < 0.01	ND < 0.5	6900.0	4100.0	10000	ND < 400
Jan-92	103.33	41.0	34.0	0.47	0.045	ND < 250	18,000	10,000	17,200	ND < 250
Apr-92	105.94	32.2	29.2	0.84	0.053	6.7	7.2	960.0	1010.0	280
Jul-92	106.5	79.9	59.7	0.86	ND < 0.02	ND < 5	ND < 10.0	200.0	280.0	280
Oct-92	103.92	21.6	27.1	0.32	ND < 0.02	71	ND < 10.0	1300.0	230.0	230
Jan-93	107.13	16.4	27.4	0.28	ND < 0.02	ND < 130	10000.0	10000	19000	ND < 250
Apr-93	115	1.8	2.2	ND < 0.005	ND < 0.02	ND < 0.5	ND < 1.0	88.0	13.0	25
Jul-93	115.52	21.0	23.2	0.2	0.056	0.6	2.0	1.8	11.0	100
Oct-93	115.76	35.5/99.2	80.3	0.71	ND < 0.2	1.3	ND < 1.0	ND < 1.0	40.0	290
Jan-94	115.42	0.36	36.0	0.23	ND < 0.02	0.81	ND < 1.0	8.3	14.0	130
Apr-94	116.20	26.9	26.4	0.33	ND < 0.02	ND < 0.5	ND < 1.0	4.0	6.5	190
Jul-94	116.76	59.0	41.4	0.20	0.038	0.58	ND < 1.0	ND < 1.0	4.2	340
Oct-94	110.86	60.7	52.8	0.45	ND < 0.02	ND < 5	ND < 10.0	270.0	39.0	390
Jan-95	111.88	28.8	34.3	0.13	0.026	ND < 5	ND < 10.0	350.0	130.0	190
Apr-95	117.69	8.6	9.1	0.21	0.052	ND < 100	1600.0	1700.0	2900.0	67
Jul-95	119.05	* 28.1/20.8	29.6	0.27	1.10/ND < 0.02	ND < 10	270/410	* 260/380	* 890/1300	90
Oct-95	115.35	**30.8	28.9	0.38	ND < 0.02	ND < 2.5	ND < 5.0	75.0	21.0	150
Jan-96	113.37	25.7	32.4	0.19	ND < 0.02	ND < 50	100.0	2100.0	1400.0	160
Apr-96	116.65	* 32.2/24.6	38.0	0.60	ND < 0.02	ND < 25	680.0	1300.0	1400.0	130
Jul-96	116.17	50	58.9	0.28	ND < 0.02	ND < 50	ND < 100.0	1000.0	270.0	140
Oct-96	112.38	63.8	75.7	0.46	ND < 0.04	ND < 50	380.0	1100.0	1900.0	310
Jan-97	114.07	*45.9/34.9	34.5	0.54	0.02	ND < 6.2	ND < 12.0	1100.0	ND < 12.0	330
Apr-97	116.96	27.3	18.8	0.53	ND < 0.02	ND < 12	35.0	1300.0	620.0	150
Jul-97	117.04	36.0	35.2	0.62	ND < 0.02	ND < 5	ND < 10.0	810.0	110.0	150
Oct-97	113.46	73.8	85.3	0.64	ND < 0.08	ND < 5	ND < 10.0	460.0	31.0	230
Jan-98	111.66	39.2	44.0	0.53	ND < 0.02	ND < 5	ND < 10.0	530.0	420.0	180
Apr-98	116.69	7.2	14.1	0.43	ND < 0.02	2.9	ND < 5.0	320.0	ND < 5.0	92
Jul-98	117.95	16.3	18.9	0.32	ND < 0.02	ND < 12	ND < 25.0	1200.0	300.0	120
Oct-98	115.31	34.1	36.2	0.44	0.030	ND < 6.2	ND < 12.0	740.0	240.0	120
Jan-99	112.41	78.6	85.2	0.58	ND < 0.04	ND < 5	ND < 10	520.0	31.0	260
Apr-99	112.43	*0.57/4.6	42.8	0.41	ND < 0.05	3.5	ND < 2.5	220	9.9	190
Jul-99	112.33	41.1	49.7	0.42	ND < 0.050	ND < 10	ND < 10	670	67	140
Oct-99	104.49	58.2	105	0.59	ND < 0.075	ND < 5.0	ND < 5.0	92	11	210
Jan-00	100.66	76.3	60.0	0.32	ND < 0.050	5.1	ND < 2.5	ND < 2.5	6.0	160
Apr-00	107.01	32.9	39.3	0.55	ND < 0.050	ND < 5.0	ND < 5.0	46	8.6	240
Oct-00	107.42	45.6	42.1	0.52	ND < 0.050	ND < 50	2500	2500	ND < 50	170
Apr-01	110.28	11.0 nple/duplicate sam	16.8	0.38	ND < 0.025	ND < 50	120	3,100	830	150

 ^{35.5/99.2 =} original sample/duplicate sam
 Analyzed after holding time had expired.

			META	ALS		VOLATILE ORGANIC COMPOUNDS						
Monitor	Groundwater	Hexavalent	Total	Cadmium	Copper	Benzene	Toluene	Ethyl-	Total	Trichloroethene		
Well	Elevation	Chromium	Chromium	i		1	[Benzene	Xylenes			
No. / Date	(Feet MSL)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)		
MW - 6B												
Jan-89	95.12	ND < 0.01	ND < 0.014	ND < 0.003	ND < 0.009	ND < 0.01	ND < 0.0	ND < 0.0	ND < 0.0	57		
Apr-89	99.11	ND < 0.05	0.06	ND < 0.01	ND < 0.02	ND < 0.7	ND < 1.0	ND < 1.0	ND < 1.0	37		
Jul-89	98.39	ND < 0.05	0.04	ND < 0.01	ND < 0.02	ND < 0.7	ND < 1.0	ND < 1.0	ND < 1.0	29		
Oct-89	95.35	ND < 0.05	ND < 0.02	ND < 0.01	ND < 0.05	ND < 0.5	ND < 1.0	ND < 1.0	ND < 1.0	29		
Jan-90	96.1	ND < 0.02	ND < 0.01	ND < 0.01	ND < 0.02	ND < 0.5	ND < 0.5	ND < 0.5	ND < 1.0	46		
Apr-90	97.76	ND < 0.02	0.02	ND < 0.005	ND < 0.02	ND < 2.5	ND < 2.5	ND < 2.5	ND < 5.0	61		
Jul-90	99.28	ND < 0.02	0.02	ND < 0.01	ND < 0.02	ND < 0.5	ND < 0.5	ND < 0.5	ND < 1.0	51		
Oct-90	98.45	ND < 0.02	0.012	ND < 0.005	ND < 0.02	ND < 0.5	ND < 1.0	ND < 1.0	ND < 1.0	52		
Jan-91	97.87	ND < 0.02	ND < 0.01	ND < 0.005	ND < 0.02	ND < 0.5	ND < 1.0	ND < 1.0	ND < 1.0	59		
Apr-92	105.86	ND < 0.02	0.014	ND < 0.005	ND < 0.02	ND < 0.5	ND < 0.5	1.1	0.8	19		
Jul-92	106.57	ND < 0.02	0.019	ND < 0.005	0.054	ND < 0.5	ND < 0.5	ND < 1.0	ND < 1.0	10		
Oct-92	104.12	ND < 0.02	ND < 0.01	ND < 0.005	ND < 0.02	ND < 0.5	12.0	2.9	13.0	9.3		
Jan-93	107.23	ND < 0.02	0.011	ND < 0.005	0.038	ND < 0.5	ND < 1.0	ND < 1.0	ND < 1.0	6.9		
Apr-93	114.64	ND < 0.02	0.014	ND < 0.005	ND < 0.02	ND < 0.5	64.0	26.0	88.0	2.6		
Jul-93	115.34	ND < 0.02	ND < 0.01	ND < 0.005	ND < 0.02	ND < 0.5	2.2	2.0	5.5	2.7		
Oct-93	115.46	ND < 0.02	0.011	ND < 0.005	ND < 0.02	ND < 0.5	ND < 1.0	ND < 1.0	ND < 1.0	5.9		
Jan-94	115.37	ND < 0.02	ND < 0.01	ND < 0.005	ND < 0.02	ND < 0.5	ND < 1.0	ND < 1.0	ND < 1.0	2.7		
Apr-94	116.15	ND < 0.02	ND < 0.01	ND < 0.005	ND < 0.02	ND < 0.5	ND < 1.0	ND < 1.0	ND < 1.0	2.0		
Jul-94	116.67	ND < 0.02	ND < 0.01	ND < 0.005	ND < 0.02	ND < 0.5	1.1	ND < 1.0	1.9	2.9		
Oct-94	111.13	ND < 0.02	ND < 0.01	ND < 0.005	ND < 0.02	ND < 0.5	1.5	ND < 1.0	8.2	1.5		
Jan-95	112.19	ND < 0.02	ND < 0.01	ND < 0.005	ND < 0.02	ND < 1	110.0	89.0	110.0	8.6		
Apr-95	117.42	ND < 0.02	ND < 0.01	ND < 0.005	ND < 0.02	ND < 0.5	1.6	9.1	6.2	2.3		
Jul-95	118.93	ND < 0.02	ND < 0.01	ND < 0.005	ND < 0.02	ND < 0.5	1.1	4.0	5.1	8.8		
Oct-95	115.45	ND < 0.02	ND < 0.01	ND < 0.005	ND < 0.02	ND < 0.5	ND < 1.0	ND < 1.0	1.0	2.6		
Jan-96	113.47	ND < 0.02	ND < 0.01	ND < 0.005	ND < 0.02	ND < 1	28.0	27.0	53.0	14		
Apr-96	116.65	ND < 0.02	0.011	ND < 0.005	ND < 0.02	ND < 1	4.2	37.0	50.0	2.9		
Jul-96	116.18	ND < 0.01	ND < 0.01	ND < 0.005	ND < 0.02	ND < 0.5	ND < 1.0	2.3	3.5	2.3		
Oct-96	112.66	ND < 0.01	ND < 0.01	ND < 0.005	ND < 0.02	ND < 0.5	1.0	2.1	2.8	6.1		
Jan-97	114.20	ND < 0.02	ND < 0.01	ND < 0.005	ND < 0.02	ND < 0.5	4.3	4.3	6.4	5.0		
Apr-97	116.95	ND < 0.02	ND < 0.01	ND < 0.005	ND < 0.02	ND < 0.5	3.6	1.7	ND < 1.0	5.2		
Jul-97	117.01	ND < 0.02	ND < 0.01	ND < 0.005	ND < 0.02	ND < 0.5	ND < 1.0	ND < 1.0	ND < 1.0	6.6		
Oct-97	113.71	ND < 0.02	ND < 0.01	ND < 0.005	ND < 0.02	ND < 0.5	ND < 1.0	ND < 1.0	ND < 1.0	6.4		
Jan-98	112.06	ND < 0.02	ND < 0.01	ND < 0.005	ND < 0.02	ND < 0.5	15.0	32.0	39.0	17.0		
Apr-98	116.76	ND < 0.02	ND < 0.01	ND < 0.005	ND < 0.02	ND < 0.5	1.6	4.2	6.0	7.7		
Jul-98	117.95	ND < 0.02	ND < 0.01	ND < 0.005	ND < 0.02	ND < 0.5	ND < 1.0	ND < 1.0	ND < 1.0	4.3		
Oct-98	114.83	ND < 0.02	ND < 0.01	ND < 0.005	ND < 0.02	ND < 0.5	ND < 1.0	ND < 1.0	ND < 1.0	9.9		
Jan-99	112.74	ND < 0.02	ND < 0.01	ND < 0.005	ND < 0.02	ND < 0.5	5.0	24.0	29.0	17.0		
Apr-99	112.56	ND < 0.01	ND < 0.01	ND < 0.005	ND < 0.025	ND < 1.0	19	42	33.9	31		
Jul-99	112.43	ND < 0.020	ND < 0.010	ND < 0.0050	ND < 0.025	ND <1.0	ND < 1.0	1.2	ND < 1.0	8.2		
Oct-99	105.04	ND < 0.010	ND < 0.010	ND < 0.0050	ND < 0.025	ND < 1.0	ND < 1.0	4.8	ND < 1.0	12.0		
Jan-00	101.26	ND < 0.020	ND < 0.010	ND < 0.0050	ND < 0.025	ND < 1.0	ND <1.0	2.0	ND < 1.0	13.0		
Apr-00	107.21	ND < 0.010	ND < 0.010	ND < 0.0050	ND < 0.025	ND <1.0	ND <1.0	1.1	ND < 1.0	7.0		
Oct-00	107.55	ND < 0.020	ND < 0.010	ND < 0.0050	ND < 0.025	ND < 1.0	ND < 1.0	ND < 1.0	ND < 1.0 ND < 1.0	9.2		
Apr-01	110.29	0.0051	ND < 0.010	ND < 0.0050	ND < 0.025	ND < 1.0	ND < 1.0	ND < 1.0	ND < 1.0	5.9		

F	1		MET	ALS	VOLATILE ORGANIC COMPOUNDS						
Monitor	Groundwater	Hexavalent	Total	Cadmium	Copper	Benzene	Toluene	Ethyl-	Total	Trichloroethene	
Well	Elevation	Chromium	Chromium					Benzene	Xylenes		
No. / Date	(Feet MSL)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	
MW · 7											
Jan-89	89.47	ND < 0.01	ND < 0.014	ND < 0.003	ND < 0.009	ND < 0.5	1.4	1.2	3.6	35	
Apr-89	98.83	ND < 0.05	0.02	ND < 0.01	ND < 0.02	ND < 0.7	ND < 1.0	ND < 1.0	ND < 1.0	47	
Jul-89	97.90	ND < 0.05	0.03	ND < 0.01	ND < 0.05	ND < 0.7	ND < 1.0	ND < 1.0	ND < 1.0	25	
Oct-89	94.72	ND < 0.05	ND < 0.02	ND < 0.01	ND < 0.05	ND < 0.5	ND < 1.0	ND < 1.0	ND < 1.0	44	
Jan-90	95.58	ND < 0.02	ND < 0.01	ND < 0.01	ND < 0.02	ND < 2.5	ND < 2.5	ND < 2.5	ND < 5.0	39	
Apr-90	97.32	ND < 0.02	ND < 0.01	ND < 0.005	ND < 0.02	ND < 2.5	ND < 2.5	ND < 2.5	ND < 5.0	46	
Jul-90	98.85	ND < 0.02	ND < 0.01	ND < 0.01	ND < 0.02	ND < 1	ND < 1.0	ND < 1.0	ND < 2.0	34	
Oct-90	98.02	ND < 0.02	ND < 0.01	ND < 0.005	ND < 0.02	ND < 0.5	ND < 1.0	ND < 1.0	ND < 1.0	19	
Jan-91	97.41	ND < 0.02	ND < 0.01	ND < 0.005	ND < 0.02	ND < 0.5	ND < 1.0	ND < 1.0	ND < 1.0	1.8	
Apr-91	100.06	ND < 0.02	ND < 0.01	ND < 0.005	ND < 0.02	ND < 0.5	ND < 1.0	ND < 1.0	ND < 1.0	30	
Jul-91	101.20	ND < 0.02	ND < 0.01	ND < 0.005	ND < 0.02	ND < 0.5	ND < 1.0	ND < 1.0	ND < 1.0	53	
Oct-91	100.62	ND < 0.02	ND < 0.01	ND < 0.005	0.01	ND < 0.5	ND < 1.0	ND < 1.0	ND < 1.0	54	
Jan-92	102.90	0.07	ND < 0.0081	ND < 0.0027	0.14	ND < 1	ND < 1.0	ND < 1.0	ND < 1.0	120	
Apr-92	105.54	ND < 0.02	0.013	ND < 0.005	0.032	ND < 0.5	ND < 1.0	ND < 1.0	ND < 1.0	55	
Jul-92	103.13	ND < 0.02	0.095	ND < 0.005	0.21	ND < 1	ND < 2.0	ND < 2.0	ND < 2.0	53	
Oct-92	103.68	ND < 0.02	0.063	ND < 0.005	0.65	ND < 0.5	ND < 1.0	ND < 1.0	ND < 1.0	98	
Jan-93	106.82	ND < 0.02	0.033	ND < 0.005	0.19	ND < 0.5	ND < 1.0	ND < 1.0	ND < 1.0	73	
Apr-93	114.54	ND < 0.02	0.011	ND < 0.005	ND < 0.02	ND 1.2	ND < 2.5	90.0	5.6	23	
Jul-93	115.14	ND < 0.02	ND < 0.01	ND < 0.005	ND < 0.02	ND < 5	ND < 10.0	210.0	ND < 10.0	43	
Oct-93	115.23	ND < 0.2	ND < 0.01	ND < 0.005	0.02	0.82	ND < 1.0	7.2	ND < 1.0	44	
Jan-94	115.08	ND < 0.02	ND < 0.01	ND < 0.005	ND < 0.02	1.4	ND < 1.0	33.0	ND < 1.0	53	
Apr-94	115.88	ND < 0.02	ND < 0.01	ND < 0.005	ND < 0.02	ND< 2.5	ND < 5.0	200.0	ND < 5.0	96	
Jul-94	116.44	ND < 0.02	ND < 0.01	ND < 0.005	0.023	0.88	ND < 1.0	7.7	1.2	140	
Oct-94	110.69	ND < 0.02	ND < 0.01	ND < 0.005	ND < 0.02	ND < 0.5	ND < 1.0	5.1	5.5	98	
Jan-95	111.59	ND < 0.02	ND < 0.01	ND < 0.005	0.026	ND < 0.5	7.0	8.7	10.0	170	
Apr-95	117.24	ND < 0.02	ND < 0.01	ND < 0.005	ND < 0.02	ND < 0.5	ND < 1.0	1.3	ND < 1.0	26	
Jul-95	118.63	ND < 0.02	ND < 0.01	ND < 0.005	ND < 0.02	ND < 0.5	ND < 1.0	2.1	3.4	53	
Oct-95	115.08	ND < 0.02	0.014	ND < 0.005	0.079	0.74	ND < 1.0	3.8	1.4	98	
Jan-96	112.98	ND < 0.02	ND < 0.01	ND < 0.005	0.043	1.0	4.2	4.9	10.0	85	
Apr-96	116.39	ND < 0.02	ND < 0.01	ND < 0.005	ND < 0.02	ND < 0.5	1.3	11.0	14.0	37	
Jul-96	115.83	ND < 0.01	ND < 0.01	ND < 0.005	ND < 0.02	1.0	ND < 1.0	1.6	2.7	87	
Oct-96	112.17	ND < 0.01	ND < 0.01	ND < 0.005	0.036	0.96	ND < 1.0	1.4	1.5	150	
Jan-97	113.76	ND < 0.02	ND < 0.01	ND < 0.005	0.029	ND < 0.5	ND < 1.0	1.7	2.8	95	
Apr-97	116.62	ND < 0.02	ND < 0.01	ND < 0.005	ND < 0.02	ND < 0.5	1.1	1.2	ND < 1.0	63	
Jul-97	116.74	ND < 0.02	ND < 0.01	ND < 0.005	ND < 0.02	0.56	ND < 1.0	ND < 1.0	ND < 1.0	54	
Oct-97	111.27	ND < 0.02	ND < 0.01	ND < 0.005	0.025	ND < 0.5	ND < 1.0	ND < 1.0	ND < 1.0	85	
Jan-98	111.47	ND < 0.02	0.01	ND < 0.005	0.044	ND < 0.5	2.2	5.2	6.8	97	
Apr-98	116.38	ND < 0.02	0.01	ND < 0.005	ND < 0.02	ND < 0.5	ND < 1.0	1.6	1.8 ND < 1.0	23 53	
Jul-98	117.62	ND < 0.02	ND < 0.01	ND < 0.005 ND < 0.005	ND < 0.02 0.042	ND < 0.5 0.68	ND < 1.0 ND < 1.0	ND < 1.0 ND < 1.0	ND < 1.0	88	
Oct-98	115.06 112.28	ND < 0.02 ND < 0.02	ND < 0.01 ND < 0.01	0.0056	0.042	ND < 1.2	ND < 1.0	ND < 1.0	ND < 1.0	160	
Jan-99	112.28	ND < 0.02	ND < 0.01	ND < 0.005	0.042	ND < 2.0	3.0	11	6.8	80	
Apr-99 Jul-99	112.11	ND < 0.020	ND < 0.020	ND < 0.003	0.042	ND < 1.0	ND < 1.0	1.3	ND < 1.0	65	
Oct-99	104.50	ND < 0.020	ND < 0.010	ND < 0.0050	0.000	ND < 2.0	ND < 2.0	ND < 2.0	ND < 2.0	130	
Jan-00	104.50	ND < 0.020	ND < 0.010	ND < 0.0050	ND < 0.025	ND < 1.0	ND < 1.0	ND < 1.0	ND < 1.0	47	
Apr-00	106.84	ND < 0.020	ND < 0.010	ND < 0.0050	0.035	ND < 1.0	ND < 1.0	1.2	ND < 1.0	48	
Oct-00	107.24	ND < 0.020	ND < 0.010	ND < 0.0050	0.057	ND < 2.5	ND < 2.5	ND < 2.5	ND < 2.5	110	
Apr-01	109.98	0.001	ND < 0.010	ND < 0.0050	ND < 0.025	ND < 1.0	ND < 1.0	ND < 1.0	ND < 1.0	78	
April	105.90]	0.001}	140 (0.010]	110 (0.0030]	140 (0.025)	110 (1.0	140 < 1.01	110 < 1.0	140 < 1.0		

			MET	ALS			VOLA	TILE ORGANIC	COMPOUNDS	
Monitor	Groundwater	Hexavalent	Total	Cadmium	Copper	Benzene	Toluene	Ethyl-	Total	Trichloroethene
Well	Elevation	Chromium	Chromium					Benzene	Xylenes	
No. / Date	(Feet MSL)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)
MW-9										
Jan-89	95.55	0.45	0.33	ND < 0.003	ND < 0.009	ND < 0.5	ND < 0.5	ND < 0.5	ND < 1.0	55
Apr-89	99.67	ND < 0.02	0.06	ND < 0.01	ND < 0.02	ND < 0.7	ND < 1.0	ND < 1.0	ND < 1.0	24
Jul-89	98.77	ND < 0.05	0.17	ND < 0.01	0.02	ND < 0.7	ND < 1.0	ND < 1.0	ND < 1.0	57
Oct-89	95.62	2.5	1.8	ND < 0.01	ND < 0.05	ND < 0.5	ND < 1.0	ND < 1.0	ND < 1.0	110
Jan-90	96.44	2.28	2.2	ND < 0.01	ND < 0.02	ND < 2.5	ND < 2.5	ND < 2.5	ND < 5.0	100
Apr-90	98.26	0.8	0.81	ND < 0.005	ND < 0.02	ND < 2.5	ND < 2.5	ND < 2.5	ND < 5.0	150
Jul-90	99.78	0.03	0.04	ND < 0.01	ND < 0.02	ND < 2.5	ND < 2.5	ND < 2.5	ND < 5.0	64
Oct-90	98.69	0.25	0.19	ND < 0.005	0.062	ND < 0.5	ND < 1.0	ND < 1.0	ND < 1.0	17
Jan-91	98.04	0.124	0.085	ND < 0.005	ND < 0.02	ND < 0.5	6.6	1.4	9.0	26
Apr-91	100.83	ND < 0.02	ND < 0.01	ND < 0.005	ND < 0.02	ND < 0.5	ND < 1.0	ND < 1.0	ND < 1.0	26
Jul-91	101.88	ND < 0.02	0.027	ND < 0.005	ND < 0.02	ND < 0.5	ND < 1.0	99.0	ND < 1.0	41
Oct-91	101.30	0.05	0.07	ND < 0.005	ND < 0.01	ND < 0.5	ND < 1.0	94.0	ND < 1.0	120
Jan-92	103.62	ND < 0.05	ND < 0.0081	ND < 0.0027	0.031	ND < 1	ND < 1.0	1220.0	92.0	45
Apr-92	106.27	ND < 0.02	ND < 0.01	ND < 0.005	ND < 0.02	ND < 0.05	2800.0	3600.0	6190.0	52
Jul-92	106.93	ND < 0.02	ND < 0.01	ND < 0.005	ND < 0.02	ND < 0.05	34000.0	7900.0	24000	ND < 1000
Oct-92	104.3	ND < 0.02	ND < 0.01	ND < 0.005	ND < 0.02	ND < 1000	83000.0	13000	58000	ND < 1000
Jan-93	107.56	ND < 0.02	0.057	ND < 0.005	0.053	ND < 50	400.0	3900.0	5300.0	ND < 100
Apr-93	115.26	ND < 0.02	ND < 0.01	ND < 0.005	ND < 0.02	ND < 50	5100.0	4000.0	9200.0	110
Jul-93	115.81	ND < 0.02	ND < 0.01	ND < 0.005	ND < 0.02	ND < 16	ND < 33.0	160.0	74.0	1100
Oct-93	115.79	ND < 0.02	ND < 0.01	ND < 0.005	ND < 0.02	ND < 2.5	ND < 5.0	120.0	45.0	390
Jan-94	115.76	ND < 0.02	ND < 0.01	ND < 0.005	ND < 0.02	ND < 10	48.0	290.0	220.0	230
Apr-94	116.51	ND < 0.02	ND < 0.01	ND < 0.005	ND < 0.02	ND < 500	17000.0	12000	32000	270
Jul-94	117.03	ND < 0.02	ND < 0.01	ND < 0.005	ND < 0.02	ND < 1000	56000.0	15000	40000	200
Oct-94	_111.17	ND < 0.02	ND < 0.01	ND < 0.005	ND < 0.02	ND < 500	57000.0	11000	34000	350
Jan-95	112.25	ND < 0.02	ND < 0.01	ND < 0.005	ND < 0.02	ND < 250	8200.0	9800.0	2000.0	310
Apr-95	117.92	ND < 0.02	ND < 0.01	ND < 0.005	ND < 0.02	ND < 50	ND < 100.0	650.0	480.0	670
Jul-95	119.31	ND < 0.02	ND < 0.01	ND < 0.005	ND < 0.02	ND < 10	69.0	780.0	340.0	540
Oct-95	115.67	ND < 0.02	ND < 0.01	ND < 0.005	ND < 0.02	ND < 25	110.0	670.0	1900.0	320
Jan-96	113.73	ND < 0.02	ND < 0.01	ND < 0.005	ND < 0.02	ND < 50	100.0	4300.0	6100.0	500
Apr-96	117.00	ND < 0.02	ND < 0.01	ND < 0.005	ND < 0.02	3.3	5.5	24.0	22.0	580
Jul-96	116.49	ND < 0.01	ND < 0.01	ND < 0.005	ND < 0.02	4.6	ND < 2.0	42.0	4.3	570
Oct-96	112.73	ND < 0.01	ND < 0.01	ND < 0.005	ND < 0.02	ND < 50	ND < 100.0	2900.0	350.0	470
Jan-97	114.46	ND < 0.02	ND < 0.01	ND < 0.005	ND < 0.02	ND < 2.5	ND < 5.0	ND < 5.0	ND < 5.0	400
Apr-97	117.29	ND < 0.02	ND < 0.01	ND < 0.005	ND < 0.02	ND < 5	ND < 10.0	18.0	ND < 10.0	770
Jul-97	117.34	ND < 0.02	ND < 0.01	ND < 0.005	ND < 0.02	ND < 25	ND < 50.0	2500.0	860.0	850
Oct-97	113.75	ND < 0.02	0.048	ND < 0.005	ND < 0.02	ND < 25	150.0	1900.0	4800.0	ND < 50
Jan-98	112.06	ND < 0.02	ND < 0.01	ND < 0.005	ND < 0.02	ND < 5	ND < 10.0	690.0	260.0	270
Apr-98	117.07	ND < 0.02	ND < 0.01	ND < 0.005	ND < 0.02	ND < 5	ND < 10,0	23.0	ND < 10.0	390
Jul-98	118.26	ND < 0.02	ND < 0.01	ND < 0.005	ND < 0.02	ND < 12	ND < 25.0	73.0	ND < 25.0	1300
Oct-98	115.49	3.3	1.3	0.0075	0.34	7.4	ND < 12.0	390.0	ND < 12.0	1200
Jan-99	112.68	3.3	2.4	ND < 0.005	ND < 0.02	ND < 6.2	ND < 12.0	100.0	83.0	550
Apr-99	112.77	ND < 0.01	0.64	ND < 0.005	ND < 0.025	ND < 5.0	ND < 5.0	ND < 5.0	ND < 5.0	350
Jul-99	112.57	5.8	5.6	ND < 0.010	ND < 0.050	ND < 25	ND < 25	ND < 25	ND < 25	810
Oct-99	104.91	4.0	4.2	ND < 0.0050	ND < 0.025	ND < 5.0	ND < 5.0	ND < 5.0	ND < 5.0	280
Jan-00	101.15	14.1	13.9	ND < 0.0050	ND < 0.025	ND < 5.0	ND < 5.0	ND < 5.0	ND < 5.0	170
Apr-00	107.56	ND < 0.010	ND < 0.010	ND < 0.0050	ND < 0.025	ND < 5.0	ND < 5.0	ND < 5.0	ND < 5.0	370
Oct-00	107.81	ND < 0.020	0.014	ND < 0.0050	ND < 0.025	ND < 5.0	ND < 5.0	29.0	ND < 5.0	160
Apr-01	110.63	0.0043	0.011	ND < 0.0050	ND < 0.025	ND < 5.0	ND < 5.0	ND < 5.0	ND < 5.0	200

			MET	ALS			VOLA	TILE ORGANIC	COMPOUNDS	
Monitor	Groundwater	Hexavalent	Total	Cadmium	Copper	Benzene	Toluene	Ethyl-	Total	Trichloroethene
Well	Elevation	Chromium	Chromium	i				Benzene	Xylenes	
No. / Date	(Feet MSL)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)
MW - 11										
Jan-89	95.97	ND < 0.01	ND < 0.014	ND < 0.003	ND < 0.009	ND < 0.5	ND < 0.5	43.0	1.5	34
Apr-89	99.85	ND < 0.02	0.04	ND < 0.01	ND < 0.02	ND < 500	7500.0	2600.0	11000	39
Jul-89	98.95	ND < 0.05	ND < 0.02	ND < 0.01	0.13	ND < 7	ND < 10.0	ND < 10.0	90.0	29
Oct-89	95.77	ND < 0.05	ND < 0.02	ND < 0.01	ND < 0.05	ND < 5	ND < 10.0	200.0	ND < 10.0	35
Jan-90	96.72	ND < 0.02	ND < 0.01	ND < 0.01	ND < 0.02	ND < 5	ND < 5.0	83.0	ND < 10.0	46
Apr-90	98.44	ND < 0.02	ND < 0.01	ND < 0.005	ND < 0.02	ND < 2.5	2.6	370.0	150.0	33
Jul-90	100.00	ND < 0.02	ND < 0.01	ND < 0.01	0.03	ND < 25	440.0	1000.0	760.0	65
Oct-90	98.97	ND < 0.02	ND < 0.01	ND < 0.005	ND < 0.02	ND < 0.5	15000.0	3000.0	10000	ND < 1
Jan-91	98.29	ND < 0.02	ND < 0.01	ND < 0.005	ND < 0.02	ND < 0.5	15000.0	4700.0	12000	ND < 1
Apr-91	101.17	ND < 0.02	ND < 0.01	ND < 0.005	ND < 0.02	ND < 0.5	8500.0	3300.0	7500.0	63
Jul-91	102.19	ND < 0.02	ND < 0.01	ND < 0.005	ND < 0.02	ND < 0.5	57.0	520.0	220.0	61
Oct-91	101.61	ND < 0.02	ND < 0.01	ND < 0.005	ND < 0.01	ND < 0.5	140.0	2000.0	660.0	110
Jan-92	104.09	0.10	ND < 0.0081	ND < 0.0027	0.02	ND < 1	7.3	230.0	26.0	85
Apr-92	106.61	ND < 0.02	ND < 0.01	ND < 0.005	ND < 0.01	ND < 0.05	1.7	130.0	2.3	70
Jul-92	107.12	ND < 0.02	0.02	ND < 0.005	0.09	ND < 0.05	ND < 0.1	17.0	ND < 0.1	160
Oct-92	104.55	ND < 0.02	0.011	ND < 0.005	ND < 0.01	ND < 0.05	ND < 0.1	11.0	ND < 0.1	160
Jan-93	108.27	ND < 0.02	0.013	ND < 0.005	0.088	ND < 1.2	ND < 2.5	110.0	ND < 2.5	86
Apr-93	115.6	ND < 0.02	ND < 0.01	ND < 0.005	ND < 0.02	ND < 0.05	ND < 1.0	2.0	ND < 1.0	59
Jul-93	116.07	ND < 0.02	ND < 0.01	ND < 0.005	ND < 0.02	ND < 0.05	2.5	1.8	6.4	230
Oct-93	116.01	ND < 0.02	ND < 0.01	ND < 0.005	ND < 0.02	ND < 0.5	ND < 1.0	2.1	3.1	150
Jan-94	116.03	ND < 0.02	ND < 0.01	ND < 0.005	ND < 0.02	ND < 0.5	ND < 1.0	2.5	2.8	190
Apr-94	116.83	ND < 0.02	ND < 0.01	ND < 0.005	ND < 0.02	ND < 0.5	ND < 1.0	ND < 1.0	ND < 1.0	80
Jul-94	117.23	ND < 0.02	ND < 0.01	ND < 0.005	ND < 0.02	ND < 0.5	ND < 1.0	ND < 1.0	1.6	180
Oct-94	111.30	ND < 0.02	0.011	ND < 0.005	ND < 0.02	ND < 0.5	ND < 1.0	4.5	ND < 1.0	360
Jan-95	112.53	ND < 0.02	ND < 0.01	ND < 0.005	ND < 0.02	ND < 10	660.0	850.0	1100.0	660
Apr-95	118.26	ND < 0.02	ND < 0.01	ND < 0.005	ND < 0.02	ND < 50	ND < 100.0	1900.0	1000.0	74
Jul-95	119.51	ND < 0.02	ND < 0.01	ND < 0.005	ND < 0.02	ND < 2.5	ND < 5.0	160.0	37.0	140
Oct-95	115.80	ND < 0.02	ND < 0.01	ND < 0.005	ND < 0.02	ND < 0.5	ND < 1.0	5.8	2.2	180
Jan-96	113.98	ND < 0.02	ND < 0.01	ND < 0.005	ND < 0.02	ND < 25	520.0	460.0	1000.0	620
Apr-96	117.37	ND < 0.02	ND < 0.01	ND < 0.005	0.023	ND < 25	160.0	1100.0	1400.0	240
Jul-96	116.75	ND < 0.01	ND < 0.01	ND < 0.005	ND < 0.02	ND < 10	ND < 20.0	460.0	290.0	220
Oct-96	112.95	ND < 0.01	ND < 0.01	ND < 0.005	ND < 0.02	ND < 0.5	1.9	20.0	8.0	250
Jan-97	114.78	ND < 0.02	ND < 0.01	ND < 0.005	0.029	ND < 0.5	9.4	84.0	88.0	160
Apr-97	117.60	ND < 0.02	ND < 0.01	ND < 0.005	ND < 0.02	ND < 2.5	ND < 5.0	120.0	8.2	370
Jul-97	117.61	ND < 0.02	ND < 0.01	ND < 0.005	0.15	ND < 2.5	ND < 5.0	8.3	ND < 5.0	240
Oct-97	114.02	ND < 0.02	ND < 0.01	ND < 0.005	0.1	ND < 2.5	ND < 5.0	ND < 5.0	ND < 5.0	350
Jan-98	112.23	ND < 0.02	ND < 0.01	ND < 0.005	ND < 0.02	ND < 12	770.0	1800.0	2200.0	390
Apr-98	117.36	ND < 0.02	ND < 0.01	ND < 0.005	0.077	ND < 1.2	63.0	150.0	210.0	180
Jul-98	118.57	ND < 0.02	ND < 0.01	ND < 0.005	0.077	ND < 1.2	ND < 2.5	41.0	4.8	150
Oct-98	115.91	ND < 0.02	ND < 0.01	ND < 0.005	0.041	ND < 5	ND < 10.0	ND < 10.0	ND < 10.0	430
Jan-99	113.05	ND < 0.02	ND < 0.01	ND < 0.005	ND < 0.02	ND < 6.2	260.0	750.0	970.0	690
Apr-99	113.14	ND < 0.01	ND < 0.01	ND < 0.005	ND < 0.025	ND < 25	670	1600	1270	480
Jul-99	112.88	ND < 0.020	ND < 0.010	ND < 0.0050	ND < 0.025	ND < 10	ND < 10	85	ND < 10	740
Oct-99	105.05	0.057	0.02	ND < 0.0050	ND < 0.025	ND < 10	ND < 10	480	52	650
Jan-00	101.31	ND < 0.020	ND < 0.010	ND < 0.0050	ND < 0.025	ND < 12	ND < 12	ND < 12	ND < 12	820
Apr-00	107.91	ND < 0.010	ND < 0.010	ND < 0.0050	ND < 0.025	ND < 12	ND < 12	55	17	1100
Oct-00	108.06	ND < 0.020	ND < 0.010	ND < 0.0050	ND < 0.025	ND < 50	ND < 50	ND < 50	ND < 50	2900
Apr-01	110.86	ND < 0.0020	ND < 0.010	ND < 0.0050	ND < 0.025	ND < 25	ND < 25	48	ND < 25	1700

			META	LS		VOLATILE ORGANIC COMPOUNDS					
Monitor	Groundwater	Hexavalent	Total	Cadmium	Copper	Benzene	Toluene	Ethyl-	Total	Trichloroethene	
Well	Elevation	Chromium	Chromium		1	1		Benzene	Xylenes		
lo. / Date	(Feet MSL)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	
W - 14S											
Oct-90	98.07	3.2	2.2	0.018	5.3	ND < 0.5	ND < 1.0	1750.0	ND < 1.0	180	
Jan-91	97.38	0.4	0.94	0.007	1	ND < 0.5	ND < 1.0	2800.0	5900.0	108	
Apr-91	99.26	0.39	0.41	0.005	0.15	ND < 0.5	ND < 1.0	4100.0	ND < 1.0	84	
Jul-91	101.27	0.02	0.31	0.005	0.11	ND < 0.5	ND < 1.0	31.0	ND < 1.0	55	
Oct-91	100.66	0.13	0.23	ND < 0.005	0.05	ND < 0.5	ND < 1.0	680.0	ND < 1.0	81	
Jan-92	103.08	0.27	0.15	ND < 0.0027	0.093	ND < 1	ND < 1.0	ND < 1.0	ND < 1.0	59	
Apr-92	105.70	0.13	0.16	ND < 0.005	0.04	ND < 0.5	ND < 0.5	ND < 0.5	ND < 0.5	56	
Jul-92	106.38	0.1	0.33	ND < 0.005	0.56	0.6	ND < 1.0	ND < 1.0	ND < 1.0	44	
Oct-92	103.72	0.16	0.54	ND < 0.005	0.72	ND < 1	ND < 1.0	ND < 1.0	ND < 1.0	71	
Jan-93	107.00	0.056	0.24	ND < 0.005	0.33	ND < 0.5	ND < 1.0	ND < 1.0	ND < 1.0	56	
Apr-93	114.80	ND < 0.02	0.018	ND < 0.005	0.032	ND < 0.5	24.0	40.0	55.0	18	
Jul-93	115.36	ND < 0.02	0.20	ND < 0.005	0.023	ND < 0.5	1.3	1.2	3.8	25	
Oct-93	115.42	ND < 0.02	0.01	ND < 0.005	0.021	ND < 0.5	ND < 1.0	2.1	3.7	25	
Jan-94	115.28	ND < 0.02	0.015	ND < 0.005	0.022	ND < 0.5	ND < 1.0	3.2	1.4	21	
Apr-94	116.06	ND < 0.02	0.022	ND < 0.005	ND < 0.020	ND < 0.5	ND < 1.0	ND < 1.0	ND < 1.0	29	
Jul-94	116.64	ND < 0.02	0.016	ND < 0.005	ND < 0.020	ND < 0.5	ND < 1.0	ND < 1.0	ND < 1.0	15	
Oct-94	110.70	0.035	0.064	ND < 0.005	ND < 0.020	0.53	ND < 1.0	ND < 1.0	ND < 1.0	58	
Feb-95	113.10	ND < 0.02	0.016	ND < 0.005	0.020	ND < 50	ND < 100.0	3000.0	690.0	50	
Apr-95	117.50	ND < 0.02	ND < 0.01	ND < 0.005	ND < 0.020	ND < 5	76.0	120.0	190.0	20	
Jul-95	118.93	ND < 0.02	ND < 0.01	0.0055	ND < 0.020	ND < 0.5	2.8	26.0	12.0	22	
Oct-95	115.25	0.022	0.046	ND < 0.005	ND < 0.020	ND < 0.5	ND < 1.0	2.1	2.0	35	
Jan-96	113.13	ND < 0.02	0.034	ND < 0.005	0.024	ND < 1	4.7	87.0	58.0	42_	
Apr-96	116.52	0.021	0.028	ND < 0.005	ND < 0.020	ND < 2.5	54.0	120.0	110.0	51	
Jul-96	116.04	ND < 0.01	0.069	ND < 0.005	ND < 0.020	0.58	ND < 1.0	20.0	10.0	37	
Oct-96	112.22	0.052	0.082	ND < 0.005	ND < 0.020	ND < 0.5	ND < 1.0	13.0	2.9	61	
Jan-97	113.85	0.024	0.031	ND < 0.005	ND < 0.020	ND < 2.5	ND < 5.0	470.0	ND < 5.0	90	
Apr-97	116.82	ND < 0.02	0.032	0.0053	ND < 0.020	0.58	2.9	91.0	36.0	45	
Jul-97	117.21	ND < 0.02	0.016	ND < 0.005	ND < 0.020	ND < 5	ND < 1.0	14.0	1.0	35	
Oct-97	113.39	0.1	0.013	ND < 0.005	ND < 0.020	ND < 0.5	ND < 1.0	20.0	1.8	57	
Jan-98	111.43	* ND/0.0103	0.018	ND < 0.005	0.020	ND < 0.5	1,1	19.0	5.0	50	
Apr-98	116.47	ND < 0.02	0.018	ND < 0.005	0.023	ND < 12	ND < 25.0	1500.0	150.0	38	
Jul-98	117.79	ND < 0.02	ND < 0.01	ND < 0.005	ND < 0.020	0.51	ND < 1.0	18.0	8.4	18	
Oct-98	115.19	0.032	0.044	ND < 0.005	0.027	ND < 1.2	ND < 2.5	120.0	29.0	62	
Jan-99	112.31	0.058	0.032	ND < 0.005	ND < 0.020	1.1	ND < 2.0	77.0	64.0	98	
Apr-99	112.21	ND < 0.01	ND < 0.01	ND < 0.005	ND < 0.025	ND < 12	ND < 12	820	47	84	
Jul-99	112.19	ND < 0.020	0.038	ND < 0.0050	0.037	ND < 50	ND < 50	3,000	ND < 50	74	
Oct-99	104.31	0.035	0.15	0.006	0.044	2.1	ND < 2.0	120	ND < 2.0	180	
Jan-00	100.43	0.11	0.26	0.0094	0.031	ND < 5.0	ND < 5.0	ND < 5.0	ND < 5.0	230	
Apr-00	106.91	ND < 0.010	ND < 0.010	ND < 0.0050	0.025	3.2	ND < 2.0	110	ND < 2.0	60	
Oct-00	107.06	0.039	0.09	ND < 0.0050	0.087	ND < 5.0	ND < 5.0	230	ND < 5.0	170	
Apr-01	110.07	0.057	0.043	ND < 0.0050	0.03	2.1	ND < 2.0	9	ND < 2.0	130	

		METALS				VOLATILE ORGANIC COMPOUNDS				
Monitor	Groundwater	Hexavalent	Total	Cadmium	Copper	Benzene	Toluene	Ethyl-	Total	Trichloroethene
Well	Elevation	Chromium	Chromium	1	}	1	1	Benzene	Xylenes	
No. / Date	(Feet MSL)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)
IW - 15S										
Oct-90	97.71	ND < 0.02	ND < 0.01	ND < 0.005	ND < 0.02	ND < 0.5	ND < 1.0	ND < 1.0	ND < 1.0	21
Jan-91	97.10	ND < 0.02	ND < 0.01	ND < 0.005	ND < 0.02	ND < 0.5	4.0	1.6	4.0	13
Apr-91	99.71	ND < 0.02	ND < 0.01	0.011	ND < 0.02	ND < 0.5	ND < 1.0	ND < 1.0	ND < 1.0	28
Jul-91	100.94	ND < 0.02	ND < 0.01	0.014	ND < 0.02	ND < 0.5	ND < 1.0	ND < 1.0	ND < 1.0	17
Oct-91	100.35	ND < 0.02	0.01	0.02	0.06	ND < 0.5	ND < 1.0	ND < 1.0	ND < 1.0	13
Jan-92	102,72	ND < 0.051	ND < 0.0081	0.008	0.01	ND < 1	ND < 1.0	ND < 1.0	ND < 1.0	15
Apr-92	105.29	ND < 0.02	ND < 0.01	ND < 0.005	ND < 0.01	ND < 0.5	ND < 0.5	ND < 0.5	ND < 0.5	4.1
Jul-92	105.95	ND < 0.02	0.04	0.005	0.27	ND < 0.5	ND < 0.5	ND < 0.5	ND < 0.5	2.9
Oct-92	103.37	ND < 0.02	ND < 0.02	0.0073	0.047	ND < 0.5	ND < 0.5	ND < 0.5	ND < 0.5	ND < 1
Jan-93	106.58	ND < 0.02	0.014	0.0085	0.1	ND < 0.5	ND < 1.0	ND < 1.0	ND < 1.0	9.0
Apr-93	114.41	ND < 0.02	0.013	ND < 0.005	ND < 0.02	ND < 0.5	14.0	10.0	22.0	4.6
Jul-93	115.01	ND < 0.02	ND < 0.01	ND < 0.005	ND < 0.02	ND < 0.5	1.2	ND < 1.0	2.4	2.4
Oct-93	115.07	ND < 0.04	ND < 0.01	ND < 0.005	ND < 0.02	ND < 0.5	ND < 1.0	ND < 1.0	ND < 1.0	3.2
Jan-94	114.90	ND < 0.02	ND < 0.01	ND < 0.005	ND < 0.02	ND < 0.5	ND < 1.0	ND < 1.0	ND < 1.0	1.9
Apr-94	115.72	ND < 0.02	ND < 0.01	ND < 0.005	ND < 0.02	ND < 0.5	ND < 1.0	ND < 1.0	ND < 1.0	3.1
Jul-94	116.31	ND < 0.02	ND < 0.01	ND < 0.005	ND < 0.02	ND < 0.5	ND < 1.0	ND < 1.0	ND < 1.0	2.1
Oct-94	110.42	ND < 0.02	ND < 0.01	ND < 0.005	ND < 0.02	ND < 0.5	ND < 1.0	ND < 1.0	ND < 1.0	6.0
Jan-95	111.14	0.048	0.044	ND < 0.005	ND < 0.02	ND < 1	4.0	64.0	27.0	3.7
Apr-95	117.15	ND < 0.02	ND < 0.01	ND < 0.005	ND < 0.02	ND < 2.5	60.0	82.0	130.0	2.8
Jul-95	118.61	ND < 0.02	ND < 0.01	ND < 0.005	ND < 0.02	ND < 0.5	2.5	18.0	12.0	5.2
Oct-95	114.45	ND < 0.02	ND < 0.01	ND < 0.005	ND < 0.02	ND < 0.5	ND < 1.0	1.0	ND < 1.0	3.9
Jan-96	112.69	ND < 0.02	0.012	ND < 0.005	ND < 0.02	ND < 0.5	1.8	25.0	22.0	3.8
Apr-96	116.09	ND < 0.02	0.015	ND < 0.005	ND < 0.02	ND < 0.5	13.0	40.0	45.0	2.8
Jul-96	115.69	ND < 0.01	0.014	ND < 0.005	ND < 0.02	ND < 0.5	ND < 1.0	9.7	5.4	3.2
Oct-96	111.81	ND < 0.01	ND < 0.01	ND < 0.005	ND < 0.02	ND < 0.5	ND < 1.0	2.9	2.6	5.3
Jan-97	113.42	ND < 0.02	0.01	ND < 0.005	ND < 0.02	ND < 0.5	5.5	69.0	1.0	5.1
Apr-97	116.35	ND < 0.02	0.01	ND < 0.005	ND < 0.02	ND < 0.5	9.3	21.0	8.5	3.3
Jul-97	116.60	ND < 0.02	0.01	ND < 0.005	ND < 0.02	ND < 0.5	ND < 1.0	8.2	1.3	4.1
Oct-97	113.08	ND < 0.02	0.01	ND < 0.005	ND < 0.02	ND < 0.5	ND < 1.0	17.0	1.7	5.2
Jan-98	111.06	* ND/0.0177	0.021	ND < 0.005	ND < 0.02	ND < 0.5	ND < 1.0	12.0	3.7	5.0
Apr-98	116.05	ND < 0.02	ND < 0.01	ND < 0.005	ND < 0.02	ND < 0.5	ND < 1.0	60.0	7.2	3.1
Jul-98	117.47	ND < 0.02	0.014	ND < 0.005	ND < 0.02	ND < 0.5	ND < 1.0	10.0	2.9	3.4
Oct-98	114.87	ND < 0.02	0.017	ND < 0.005	ND < 0.02	ND < 0.5	ND < 1.0	45.0	12.0	3.9
Jan-99	111.98	0.024	ND < 0.01	ND < 0.005	ND < 0.02	ND < 0.5	ND < 1.0	19.0	2.2	7.0
Apr-99	111.85	ND < 0.01	0.013	ND < 0.005	ND < 0.025	ND < 1.0	ND < 1.0	23	2.2	4.2
Jul-99	111.89	ND < 0.020	0.010	ND < 0.0050	ND < 0.025	ND < 1.0	ND < 1.0		ND < 2.0	3.9
Oct-99	104.07	0.014	0.015	ND < 0.0050	ND < 0.025	ND < 2.0	ND < 2.0	12		6.7
Jan-00	100.09	ND < 0.020	ND < 0.010	0.012	ND < 0.025	ND < 1.0	ND < 1.0	9.3	ND < 1.0	25
Apr-00	106.56	ND < 0.010	ND < 0.010	ND < 0.0050	ND < 0.025	ND < 1.0	ND < 1.0	ND < 1.0	ND < 1.0	17
Oct-00	106.82	ND < 0.020	ND < 0.010	ND < 0.0050	ND < 0.025	ND < 1.0	ND < 1.0	17	ND < 1.0	6.7
Apr-01	109.84	0.0053 7196/EPA Meth	ND < 0.010	ND < 0.0050	ND < 0.025	ND < 1.0	ND < 1.0	ND < 1.0	ND < 1.0	3

Shallow Wells PHIBRO-TECH, INC. July 2001 Monitoring Historical Results

Γ	METALS					VOLATILE ORGANIC COMPOUNDS				
Monitor	Groundwater	Hexavalent	Total	Cadmium	Copper	Benzene	Toluene	Ethyl-	Total	Trichloroethene
Well	Elevation	Chromium	Chromium		1			Benzene	Xylenes	
No. / Date	(Feet MSL)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)
MW - 16										
Apr-92	105.99	ND < 0.02	ND < 0.01	ND < 0.005	ND < 0.01	ND < 0.5	0.7	1.0	1.6	52
Jul-92	106.7	ND < 0.02	0.03	ND < 0.02	0.35	ND < 0.5	ND < 1.0	ND < 1.0	ND < 1.0	35
Oct-92	104.07	ND < 0.02	0.011	ND < 0.005	0.15	ND < 0.5	ND < 1.0	ND < 1.0	ND < 1.0	72
Jan-93	107.3	ND < 0.02	ND < 0.01	ND < 0.005	0.44	ND < 1.2	ND < 2.5	ND < 2.5	ND < 2.5	51
Apr-93	114.9	ND < 0.02	ND < 0.01	ND < 0.005	ND < 0.02	ND < 25	55.0	2300.0	1200.0	42
Jul-93	115.54	ND < 0.02	ND < 0.01	ND < 0.005	ND < 0.02	ND < 50	ND < 100.0	3100.0	2000.0	15
Oct-93	115.51	ND < 0.04	ND < 0.01	ND < 0.005	ND < 0.02	ND < 5.0	ND < 10.0	340.0	ND < 10.0	24
Jan-94	115.46	ND < 0.02	ND < 0.01	ND < 0.005	ND < 0.02	ND < 0.02	ND < 20.0	1000.0	ND < 20.0	22
Apr-94	116.25	ND < 0.02	ND < 0.01	ND < 0.005	ND < 0.02	ND < 10	ND < 20.0	820.0	ND < 20.0	37
Jul-94	116.78	ND < 0.02	ND < 0.01	ND < 0.005	ND < 0.02	ND < 25	ND < 50.0	1300.0	730.0	76
Oct-94	111.02	ND < 0.02	ND < 0.01	ND < 0.005	ND < 0.02	ND < 0.5	1.5	2.4	9.7	91
Jan-95	112.08	ND < 0.02	ND < 0.01	ND < 0.005	ND < 0.02	ND < 0.5	ND < 1.0	ND < 1.0	ND < 1.0	17
Apr-95	117.60	ND < 0.02	ND < 0.01	ND < 0.005	ND < 0.02	ND < 5	16.0	36.0	55.0	34
Jul-95	118.99	ND < 0.02	ND < 0.01	ND < 0.005	ND < 0.02	ND < 10	ND < 20.0	* 540/370	ND < 20.0	67
Oct-95	115.45	ND < 0.02	ND < 0.01	ND < 0.005	ND < 0.02	ND < 0.5	ND < 1.0	1.8	1.3	60
Jan-96	113.49	ND < 0.02	ND < 0.01	ND < 0.005	ND < 0.02	ND < 0.5	ND < 1.0	11.0	9.7	26
Apr-96	116.72	ND < 0.02	ND < 0.01	ND < 0.005	ND < 0.02	ND < 0.5	9.8	30.0	33.0	36
Jul-96	116.24	ND < 0.01	ND < 0.01	ND < 0.005	ND < 0.02	ND < 0.5	ND < 1.0	6.6	3.6	110
Oct-96	112.59	ND < 0.01	ND < 0.01	ND < 0.005	ND < 0.02	ND < 5	49.0	130.0	230.0	73
Jan-97	114.18	ND < 0.02	ND < 0.01	ND < 0.005	ND < 0.02	ND < 1	4.6	23.0	ND < 2.0	32
Apr-97	117.01	ND < 0.02	ND < 0.01	ND < 0.005	ND < 0.02	ND < 1	ND < 2.0	7.2	2.4	31
Jul-97	117.12	ND < 0.02	ND < 0.01	ND < 0.005	ND < 0.02	ND < 1.2	ND < 2.5	6.5	ND < 2.5	30
Oct-97	113.66	ND < 0.02	ND < 0.01	ND < 0.005	ND < 0.02	ND < 2.5	ND < 5.0	8.2	ND < 5.0	53
Jan-98	111.92	ND < 0.02	ND < 0.01	ND < 0.005	ND < 0.02	ND < 0.5	ND < 1.0	12.0	ND < 3.8	29
Apr-98	116.79	ND < 0.02	ND < 0.01	ND < 0.005	0.023	ND < 0.5	ND < 1.0	28.0	2.7	29
Jul-98	118.00	ND < 0.02	ND < 0.01	ND < 0.005	0.031	ND < 0.5	ND < 1.0	6.0	1.8	28
Oct-98	115.42	ND < 0.02	ND < 0.01	ND < 0.005	ND < 0.02	ND < 2.5	ND <5.0	16.0	ND < 5.0	58
Jan-99	112.68	ND < 0.02	ND < 0.01	ND < 0.005	ND < 0.02	ND < 1.0	ND < 2.0	11.0	ND < 2.0	36
Apr-99	112.59	ND < 0.01	ND < 0.01	ND < 0.005	ND < 0.025	ND < 2.0	ND < 2.0	6.1	ND < 2.0	39
Jul-99	112.43	ND < 0.020	ND < 0.010	ND < 0.0050	ND < 0.025	ND < 2.0	ND < 2.0	33	ND < 2.0	29
Oct-99	104.81	ND < 0.010	ND < 0.010	ND < 0.0050	ND < 0.025	ND < 2.0	ND < 2.0	ND < 2.0	ND < 5.0	42
Jan-00	101.03	ND < 0.020	ND < 0.010	ND < 0.0050	ND < 0.025	ND < 1.0	ND < 1.0	ND < 1.0	ND < 1.0	18
Apr-00	107.25	ND < 0.010	ND < 0.010	ND < 0.0050	ND < 0.025	ND < 2.0	ND < 2.0	ND < 2.0	ND < 2.0	26
Oct-00	107.51	ND < 0.020	ND < 0.010	ND < 0.0050	0.3	ND < 2.5	ND < 2.5	7	ND < 2.5	36
Apr-01	110.34	0.0003	ND < 0.010	ND < 0.0050	ND < 0.025	ND < 2.0	ND < 2.0	39.0	11.6	36

1:\2279\2279-111\SPRDSHTS\01-07\Jul01.xls]tab6-1

Deep Wells PHIBRO-TECH, INC. July 2001 Monitoring Historical Results

			Me	etals		· · · · · · · · · · · · · · · · · · ·	Vol	atile Organic C	ompounds	
Monitor	Groundwater	Hexavalent	Total	Cadmium	Copper	Benzene	Toluene	Ethyl-	Total	Trichloroethene
Well	Elevation	Chromium	Chromium					Benzene	Xylenes	
No. / Date	(Feet MSL)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)
MW - 1D										
Jan-99	114.00	ND < 0.02	ND < 0.01	ND < 0.005	ND < 0.02	ND < 0.5	ND < 1	1	ND < 1	2
Apr-99	114.01	ND < 0.02	ND < 0.01	ND < 0.005	ND < 0.025	ND < 1	ND < 1	ND < 1	ND < 2	2.1
Jul-99	113.67	ND < 0.02	ND < 0.01	ND < 0.005	ND < 0.025	ND < 1	ND < 1	ND < 1	ND < 2	2.7
Oct-99	106.55	0.014	ND < 0.01	ND < 0.005	ND < 0.025	ND < 1	ND < 1	ND < 1	ND < 1	2
Jan-00	152.60	ND < 0.02	ND < 0.01	ND < 0.005	ND < 0.025	ND < 1	ND < 1	ND < 1	ND < 1	7.1
Apr-00	108.84	ND < 0.01	ND < 0.01	ND < 0.005	ND < 0.025	ND < 1	1.7	ND < 1	ND < 1	3.3
Oct-00	108.98	ND < 0.020	ND < 0.010	ND < 0.0050	0.025	ND < 1.0	ND < 1.0	ND < 1.0	ND < 1.0	3.1
Apr-01	111.61	0.0007	ND < 0.010	ND < 0.0050	ND < 0.025	ND < 1.0	ND < 1.0	ND < 1.0	ND < 1.0	2.7
MW - 4A										
Jan-99	112.63	0.02	0.025	ND < 0.005	ND < 0.02	ND < 0.5	ND < 1	ND < 1	ND < 1	10
Apr-99	112.58	ND < 0.02	0.012	ND < 0.005	ND < 0.025	ND < 1	ND < 1	2.9	1.7	7
Jul-99	112.46	ND < 0.02	ND < 0.01	ND < 0.005	ND < 0.025	ND < 1	ND < 1	670	67	5.2
Oct-99	104.64	0.017	ND < 0.01	ND < 0.005	ND < 0.025	ND < 1	ND < 1	ND < 1	ND < 2	4.5
Jan-00	152.46	ND < 0.02	0.015	ND < 0.005	ND < 0.025	ND < 1	ND < 1	ND < 1	ND < 1	4.2
Apr-00	107.30	ND < 0.01	ND < 0.01	ND < 0.005	ND < 0.025	ND < 1	ND < 1	ND < 1	ND < 1	8.6
Oct-00	107.48	ND < 0.020	ND < 0.010	ND < 0.0050	ND < 0.025	ND < 1.0	ND < 1.0	ND < 1.0	ND < 1.0	7.4
Apr-01	110.38	0.0056	ND < 0.010	ND < 0.0050	ND < 0.025	ND < 1.0	ND < 1.0	ND < 1.0	ND < 1.0	19
MW - 6D										
Jan-99	112.78	ND < 0.02	ND < 0.01	ND < 0.005	ND < 0.02	ND < 0.5	1.2	5.8	6.4	7.1
Apr-99	112.62	ND < 0.02	ND < 0.01	ND < 0.005	ND < 0.025	ND < 1	4	14	11.5	10
Jul-99	112.43	ND < 0.02	ND < 0.01	ND < 0.005	ND < 0.025	ND < 1	ND < 1	4.4	ND < 2	23
Oct-99	105.10	ND < 0.01	ND < 0.01	ND < 0.005	ND < 0.025	ND < 1	ND < 1	2.9	ND < 2	8.8
Jan-00	150.13	ND < 0.02	ND < 0.01	ND < 0.005	ND < 0.025	ND < 1	ND < 1	1.8	ND < 1	9.2
Apr-00	107.25	ND < 0.01	ND < 0.01	ND < 0.005	ND < 0.025	ND < 1	ND < 1	1	ND < 1	4.3
Oct-00	107.59	ND < 0.020	ND < 0.010	ND < 0.0050	ND < 0.025	ND < 1.0	ND < 1.0	ND < 1.0	ND < 1.0	
Apr-01	110.31	0.0026	ND < 0.010	ND < 0.0050	ND < 0.025	ND < 1.0	ND < 1.0	ND < 1.0	ND < 1.0	10
MW -15D										
Jan-99	111.92	ND < 0.02	ND < 0.01	ND < 0.005	ND < 0.02	ND < 0.5	ND < 1	15	2.1	5.4
Apr-99	111.81	ND < 0.02	0.35	ND < 0.005	ND < 0.025	ND < 1	ND < 1	12	1.6	25
Jul-99	111.74	ND < 0.02	ND < 0.01	ND < 0.005	ND < 0.025	ND < 1	ND < 1	34	ND < 2	9
Oct-99	103.88	ND < 0.01	ND < 0.01	ND < 0.005	ND < 0.025	ND < 1	ND < 1	6	ND < 2	
Jan-00	150.96	ND < 0.02	ND < 0.01	ND < 0.005	ND < 0.025	ND < 1	ND < 1	ND < 1	ND < 1	9.7
Apr-00	106.54	0.016	0.013	ND < 0.005	ND < 0.025	ND < 1	ND < 1	ND < 1	ND < 1	13
Oct-00	106.69	ND < 0.020	ND < 0.010	ND < 0.0050	ND < 0.025	1.8	ND < 1.0	2.9	ND < 1.0	
Apr-01	109.62	0.014	0.025	ND < 0.0050	ND < 0.025	ND < 1.0	ND < 1.0	11	2.1	12

ND = Below detection limit as noted

MSL = Mean Sea Level

Appendix C Severn Trent Laboratories Analytical Reports

STL Los Angeles

1721 South Grand Avenue Santa Ana, CA 92705-4808

Tel: 714 258 8610 Fax: 714 258 0921 www.stl-inc.com

October 22, 2001

STL LOT NUMBER: E1J180344

NELAP Certification Number: 01118CA PO/CONTRACT: 2279-11462-111.FLD

Sharon Wallin Camp, Dresser, McKee 18881 Von Karman, Suite 650 Irvine, CA 92612

Dear Ms. Wallin,

This report contains the analytical results for the eight samples received under chain of custody by STL Los Angeles on October 18, 2001. These samples are associated with your PTI Santa Fe Springs project.

All applicable quality control procedures met method-specified acceptance criteria except as noted on the following page. See Project Receipt Checklist for container temperature and conditions. Temperature reading between 2 to 6 degrees Celsius is considered within acceptable criteria. Any matrix related anomaly is footnoted within the report. The Hexavalent Chromium by 7199 analysis was performed by Del Mar Analytical. See attached report for any related anomaly.

STL Los Angeles certifies that the tests performed at our facility meet all NELAP requirements for parameters for which accreditation is required or available. The case narrative is an integral part of the report. This report shall not be reproduced except in full, without the written approval of the laboratory.

If you have any questions, please feel free to call me at (714) 258-8610 extension 309.

Sincerely,

Diane Suzuki Project Manager CC: Project File

000067

Page 1 of ______ total pages in this report.

LOT NUMBER E1J180344

Nonconformance 07-16600

Affected Samples:

E1J180344 (1): PTI-MW4-051 E1J180344 (2): PTI-MW35-051 E1J180344 (4): PTI-MW09-051 E1J180344 (5): PTI-MW37-051

E1J180344 (7): PTI-MW11-051 E1J180344 (8): PTI-EB02-051

Affected Methods:

8270C SIM, 1,4 Dioxane

Case Narrative:

Due to insufficient volume for MS/MSD, a LCS/DCS was prepared to measure accuracy of the batch.

Quantims Lo Client Name Received by Delivered by Custody Sea Custody Sea	: <u>CA19</u> :Clie	P DR	15552	44			2971	6		
Client Name Received by Delivered by	: <u>CA19</u> :Clie	P DR	15552	1 B				6		
Received by Delivered by	:	MLT			GO KEF	Project	Pho mo	1		
Delivered by	: Clie					Date/Tim	e Received:	10/19/	21	10.2
•••••		51 / L		rne 🗍	Fed Ex	□0HL	Ultra-Ex	Rev B		13.50
Custody Sea	•••••	S			Other					
Custody Sea		•••••	7				••••••	••••••••		/ Date
020002,	I Status	: []Inta	ct [Broken	MN	ne	•••••		Mi	1818
Custody Sea	i #(s):						☐No Se	eal #		-//
Sample Cont	ainer(s)	: STL	-LA []Client	N/	Α	(CORRECTED T			
	1-1 1000	COOLAN	ivi in oc.	9	9°C.		CORRECTED TO	MP16C		
hermomete	r Used :	: Idía, (li	fra-red).	A 🔲	Digital (Pr	obe)	_(CDAREGIED I			
Samples:		U Intac	-= -3º℃ :t)	Broken	Other				
Anomalies:		✓No			Yes (See	Clouseau)	•••••			
Labeled by		•						•		
Labeling che										
	• • • • • • •	• • • • • • • •	•••••	• • • • • • • • •	•••••	• • • • • • • • • • •	• • • • • • • • • • • • •	• • • • • • • • • • • •	• • • • • • •	••••••
Turn Around	Time:]RUSH-	24HR [_IRUSH-	-48HR [_IRUSH-72	HR MOR	MAL		
Short-Hold N	otificati	on: 🔣 Pl	h (X We	t Chem	Metal	s (Filter/Pre	s) 🖸 Encore	: ☑N/A		<u> </u>
Outside Anal	ysis(es)	(Test/La	ab/Date	Sent Out):			/ —		7
	•									
_										
								• • • • • • • • • • • • • • • • • • • •		
-										
_							*****	*************		
			• • • • • •	• LEAVE N	D BLANK SP	CES ; USE N/A	•••••			
Fraction	,2	3,6	4,5	7.8			7.			PH
VOAh /*	3	3	3	3						N/A
26ml PBus	1	1	1	j						>12
THE HOLL	-			_						
128MLPB	, 	,	/	/						
	-/, - 	.,	/	,						<2
Day CPBU			7	,						
2,16										
		-Z-						C3-Lab Shared		
		a Bondo AGE		AGB: Amber	Glass Soule 21	t Puly Bonde	L-Secon Sampler	V:YOA	-	
Number of VO	A's w/ H	eadspace	present							-
OGGED BY	/DATE	R	11 11	1191	2 / 🖂	VIEWED	RY/DATE.	201	0/18/	121

Analytical Report

800000

EXECUTIVE SUMMARY - Detection Highlights

E1J180344

PARAMETER	RESULT	REPORTING LIMIT	UNITS	ANALYTICAL METHOD
PTI-MW4-051 10/18/01 08:30 001				
Cadmium	0.44	0.010	mg/L	SW846 6010B
Chromium	39.8	0.020	mg/L	SW846 6010B
1,4-Dioxane	37 Q	3.8	ug/L	SW846 8270C SIM
1,1-Dichloroethane	73	50	${\tt ug/L}$	SW846 8260B
cis-1,2-Dichloroethene	65	50	${ m ug/L}$	SW846 8260B
Ethylbenzene	3700	50	ug/L	SW846 8260B
Trichloroethene	170	50	ug/L	SW846 8260B
рН	6.9	0.10	No Units	SW846 9040B
PTI-MW35-051 10/18/01 08:30 002				
Cadmium	0.40	0.010	mg/L	SW846 6010B
Chromium	28.9	0.020	mg/L	SW846 6010B
1,4-Dioxane	36 Q	1.9	ug/L	SW846 8270C SIM
1,1-Dichloroethane	90	50	${ m ug/L}$	SW846 8260B
cis-1,2-Dichloroethene	81	50	\mathtt{ug}/\mathtt{L}	SW846 8260B
Ethylbenzene	2800	50	ug/L	SW846 8260B
Methylene chloride	59	50	ug/L	SW846 8260B
Trichloroethene	220	50	ug/L	SW846 8260B
рН	6.8	0.10	No Units	SW846 9040B
PTI-MW16-051 10/18/01 09:50 003				
1,1-Dichloroethane	130	2.0	ug/L	SW846 8260B
1,2-Dichloroethane	49	2.0	ug/L	SW846 8260B
1,1-Dichloroethene	13	2.0	ug/L	SW846 8260B
cis-1,2-Dichloroethene	14	2.0	ug/L	SW846 8260B
trans-1,2-Dichloroethene	2.8	2.0	ug/L	SW846 8260B
Ethylbenzene	41	2.0	ug/L	SW846 8260B
Trichloroethene	34	2.0	ug/L	SW846 8260B
рН	7.0	0.10	No Units	SW846 9040B
PTI-MW09-051 10/18/01 11:15 004				
Chromium	1.3	0.010	mg/L	SW846 6010B
1,4-Dioxane	75 Q	4.8	ug/L	SW846 8270C SIM
Chloroform	110	5.0	ug/L	SW846 8260B
1,1-Dichloroethane	260	5.0	ug/L	SW846 8260B
1,2-Dichloroethane	240	5.0	ug/L	SW846 8260B
1,1-Dichloroethene	89	5.0	ug/L	SW846 8260B
cis-1,2-Dichloroethene	15	5.0	ug/L	SW846 8260B
Ethylbenzene	8.1	5.0	ug/L	SW846 8260B
Methylene chloride	69	5.0	ug/L	SW846 8260B
-				

(Continued on next page)

EXECUTIVE SUMMARY - Detection Highlights

E1J180344

			REPORTING		ANALYTICAL
	PARAMETER	RESULT	LIMIT	UNITS	METHOD
•	PTI-MW09-051 10/18/01 11:15 004				
	Tetrachloroethene	6.5	5.0	ug/L	SW846 8260B
يعند	1,1,1-Trichloroethane	8.8	5.0	ug/L	SW846 8260B
_	Trichloroethene	440	5.0	ug/L	SW846 8260B
	рН	6.9	0.10	No Units	SW846 9040B
•	PTI-MW37-051 10/18/01 11:15 005				
	Chromium	1.4	0.010	mg/L	SW846 6010B
هنند	1,4-Dioxane	88 Q	4.7	ug/L	SW846 8270C SIM
_	Chloroform	65	5.0	ug/L	SW846 8260B
	1,1-Dichloroethane	160	5.0	ug/L	SW846 8260B
	1,2-Dichloroethane	250	5.0	ug/L	SW846 8260B
	1,1-Dichloroethene	64	5.0	ug/L	SW846 8260B
	cis-1,2-Dichloroethene	7.6	5.0	ug/L	SW846 8260B
	Ethylbenzene	33	5.0	ug/L	SW846 8260B
	Methylene chloride	68	5.0	ug/L	SW846 8260B
_	Trichloroethene	340	5.0	ug/L	SW846 8260B
	рН	6.9	0.10	No Units	SW846 9040B
-	PTI-MW7-051 10/18/01 13:25 006				
	Copper	0.073	0.050	mg/L	SW846 6010B
	Chloroform	2.8	2.0	ug/L	SW846 8260B
3000	1,1-Dichloroethane	78	2.0	ug/L	SW846 8260B
	1,2-Dichloroethane	27	2.0	ug/L	SW846 8260B
	1,1-Dichloroethene	16	2.0	ug/L	SW846 8260B
	cis-1,2-Dichloroethene	36	2.0	ug/L	SW846 8260B
-	trans-1,2-Dichloroethene	4.8	2.0	ug/L	SW846 8260B
	Ethylbenzene	2.0	2.0	ug/L	SW846 8260B
	Trichloroethene	160	2.0	ug/L	SW846 8260B
	рн	6.7	0.10	No Units	SW846 9040B
	PTI-MW11-051 10/18/01 14:30 007				
***	1,4-Dioxane	12	0.95	ug/L	SW846 8270C SIM
	Chloroform	50	25	ug/L	SW846 8260B
	1,1-Dichloroethane	410	25	ug/L	SW846 8260B
	1,1-Dichloroethene	98	25	ug/L	SW846 8260B
_	cis-1,2-Dichloroethene	51	25	ug/L	SW846 8260B
	Ethylbenzene	90	25	ug/L	SW846 8260B
	1,1,1-Trichloroethane	27	25	ug/L	SW846 8260B
	Trichloroethene	1500	25	ug/L	SW846 8260B
	m-Xylene & p-Xylene	97	25	ug/L	SW846 8260B

(Continued on next page)

EXECUTIVE SUMMARY - Detection Highlights

E1J180344

PARAMETER	RESULT	REPORTING LIMIT	UNITS	ANALYTICAL METHOD
PTI-MW11-051 10/18/01 14:30 007				
рН	6.7	0.10	No Units	SW846 9040B
PTI-EB02-051 10/18/01 12:40 008				
Dibromochloromethane Chloroform pH	1.0 2.0 7.2	1.0 1.0 0.10	ug/L ug/L No Units	SW846 8260B SW846 8260B SW846 9040B

METHODS SUMMARY

E1J180344

PARAMETER	ANALYTICAL METHOD	PREPARATION METHOD
pH Aqueous	SW846 9040B	SW846 9040B
Inductively Coupled Plasma (ICP) Metals	SW846 6010B	SW846 3005A
Volatile Organics by GC/MS	SW846 8260B	SW846 5030B/826
8270C (SIM)	SW846 8270C SIM	I

References:

SW846 "Test Methods for Evaluating Solid Waste, Physical/Chemical Methods", Third Edition, November 1986 and its updates.

000012

SAMPLE SUMMARY

B1J180344

WO #	SAMPLE#	CLIENT SAMPLE ID	SAMPLED DATE	SAMP TIME
EMEGR	001	PTI-MW4-051	10/18/01	08:30
EMEGW	002	PTI-MW35-051	10/18/01	08:30
EMEGX	003	PTI-MW16-051	10/18/01	09:50
EMEG2	004	PTI-MW09-051	10/18/01	11:15
EMEG8	005	PTI-MW37-051	10/18/01	11:15
EMEG9	006	PTI-MW7-051	10/18/01	13:25
EMEHC	007	PTI-MW11-051	10/18/01	14:30
EMEHE	800	PTI-EB02-051	10/18/01	12:40

NOTE(S):

- The analytical results of the samples listed above are presented on the following pages.
- All calculations are performed before rounding to avoid round-off errors in calculated results.
- Results noted as "ND" were not detected at or above the stated limit.
- This report must not be reproduced, except in full, without the written approval of the laboratory.
- Results for the following parameters are never reported on a dry weight basis: color, corrosivity, density, flashpoint, ignitability, layers, odor, paint filter test, pH, porosity pressure, reactivity, redox potential, specific gravity, spot tests, solids, solubility, temperature, viscosity, and weight.

Client Sample ID: PTI-MW4-051

GC/MS Semivolatiles

Lot-Sample #:	E1J180344-001	Work Order #:	EMEGR1AG	Matrix	:	WATER
Date Sampled:	10/18/01 08:30	Date Received:	10/18/01 1	5:32 MS Run	#:	
Prep Date:	10/19/01	Analysis Date:	10/23/01			
Prep Batch #:	1292556	Analysis Time:	15:22			
		Method:	SW846 8270	C SIM		
			REPORTING			
PARAMETER		RESULT	LIMIT	UNITS	MDL	
1,4-Dioxane		37 Q	3.8	ug/L	1.2	
1,4-Dioxane		37 Q	3.8	ug/L	1.2	
1,4-Dioxane		37 Q PERCENT	3.8 RECOVERY	ug/L	1.2	
1,4-Dioxane SURROGATE		-		ug/L	1.2	
,		PERCENT	RECOVERY	ug/L	1.2	
SURROGATE		PERCENT RECOVERY	RECOVERY LIMITS	ug/L	1.2	
SURROGATE 2-Fluorophenol		PERCENT RECOVERY 59	RECOVERY LIMITS (30 - 120)	ug/L	1.2	

Q Elevated reporting limit. The reporting limit is elevated due to high analyte levels.

Client Sample ID: PTI-MW4-051

GC/MS Volatiles

Date Sampled...: 10/18/01 08:30 Date Received..: 10/18/01 15:32 MS Run #.....: 1296208

Matrix..... WATER

15

25

10

ug/L

ug/L

ug/L

Lot-Sample #...: E1J180344-001 Work Order #...: EMEGR1AA

Prep Date: 10/23/01 Prep Batch #: 1296396	Analysis Ti	te: 10/23/03 me: 02:25 : SW846 83	02:25			
PARAMETER	RESULT	REPORTII LIMIT	NG UNITS	MDL		
Benzene	ND	50	ug/L	15		
Bromodichloromethane	ND	50	ug/L	15		
Bromoform	ND	50	ug/L	15		
Bromomethane	ND	100	ug/L	50		
Carbon tetrachloride	ND	50	ug/L	15		
Chlorobenzene	ND	50	ug/L	15		
Dibromochloromethane	ND	50	ug/L	20		
Chloroethane	ND	100	ug/L	15		
Chloroform	ND	50	ug/L	15		
Chloromethane	ND	100	ug/L	15		
1,2-Dichlorobenzene	ND	50	ug/L	15		
1,3-Dichlorobenzene	ND	50	ug/L	15		
1,4-Dichlorobenzene	ND	50	ug/L	15		
1,1-Dichloroethane	73	50	ug/L	10		
1,2-Dichloroethane	ND	50	ug/L	20		
1,1-Dichloroethene	ND	50	ug/L	15		
cis-1,2-Dichloroethene	65	50	ug/L	15		
trans-1,2-Dichloroethene	ND	50	ug/L	15		
1,2-Dichloropropane	ND	50	ug/L	15		
cis-1,3-Dichloropropene	ND	50	ug/L	15		
trans-1,3-Dichloropropene	ND	50	ug/L	25		
Ethylbenzene	3700	50	ug/L	10		
Methylene chloride	ND	50	ug/L	15		
1,1,2,2-Tetrachloroethane	ND	50	ug/L	20		
Tetrachloroethene	ND	50	ug/L	15		
Toluene	ND	50	ug/L	15		
1,1,1-Trichloroethane	ND	50	ug/L	10		
1,1,2-Trichloroethane	ND	50	ug/L	15		
Trichloroethene	170	50	ug/L	15		
Trichlorofluoromethane	ND	100	ug/L	15		
**!			1-			

100

50

50

	PERCENT	RECOVERY
SURROGATE	RECOVERY	LIMITS
Bromofluorobenzene	115	(75 - 120)
1,2-Dichloroethane-d4	104	(65 - 130)
Toluene-d8	105	(80 - 130)

ND

ND

ND

Vinyl chloride

o-Xylene

m-Xylene & p-Xylene

Client Sample ID: PTI-MW35-051

GC/MS Semivolatiles

Lot-Sample #:	E1J180344-002	Work Order #:	EMEGW1AG	Matrix	:	WATER
Date Sampled:	10/18/01 08:30	Date Received:	10/18/01 1	5:32 MS Run	#:	
Prep Date:	10/19/01	Analysis Date:	10/23/01			
Prep Batch #:	1292556	Analysis Time:	14:20			
		Method:	SW846 8270	C SIM		
			REPORTING			
PARAMETER		RESULT	LIMIT	UNITS	MDL	
1.4-Dioxane		36 O	1.9	ug/L	0.63	
I, I DIOMINIC						
1,4 DIOXIIIC		~				
1,4 Dioxano		PERCENT	RECOVERY			
SURROGATE		~	RECOVERY LIMITS			
		PERCENT				
SURROGATE		PERCENT RECOVERY	LIMITS			
SURROGATE 2-Fluorophenol		PERCENT RECOVERY 67	LIMITS (30 - 120)			

Q Elevated reporting limit. The reporting limit is elevated due to high analyte levels.

Client Sample ID: PTI-MW35-051

GC/MS Volatiles

Lot-Sample #:	E1J180344-002	Work Order #:	EMEGW1AA	Matrix:	WATER
Date Sampled:	10/18/01 08:30	Date Received:	10/18/01 15:32	MS Run #:	1296208
Prep Date:	10/23/01	Analysis Date:	10/23/01		
Prep Batch #:	1296396	Analysis Time:	02:55		
		Method:	SW846 8260B		

		REPORTI	1G	
PARAMETER	RESULT	LIMIT	UNITS	MDL
Benzene	ND	50	ug/L	15
Bromodichloromethane	ND	50	ug/L	15
Bromoform	ND	50	ug/L	15
Bromomethane	ND	100	ug/L	50
Carbon tetrachloride	ND	50	ug/L	15
Chlorobenzene	ND	50	ug/L	15
Dibromochloromethane	ND	50	ug/L	20
Chloroethane	ND	100	ug/L	15
Chloroform	ND	50	ug/L	15
Chloromethane	ND	100	ug/L	15
1,2-Dichlorobenzene	ND	50	ug/L	15
1,3-Dichlorobenzene	ND	50	ug/L	15
1,4-Dichlorobenzene	ND	50	ug/L	15
1,1-Dichloroethane	90	5 0	ug/L	10
1,2-Dichloroethane	ND	50	ug/L	20
1,1-Dichloroethene	ND	50	ug/L	15
cis-1,2-Dichloroethene	81	5 0	ug/L	15
trans-1,2-Dichloroethene	ND	50	ug/L	15
1,2-Dichloropropane	ND	50	ug/L	15
cis-1,3-Dichloropropene	ND	50	ug/L	15
trans-1,3-Dichloropropene	ND	50	ug/L	25
Ethylbenzene	2800	5 0	ug/L	10
Methylene chloride	59	5 0	ug/L	15
1,1,2,2-Tetrachloroethane	ND	50	ug/L	20
Tetrachloroethene	ND	50	ug/L	15
Toluene	ND	50	ug/L	15
1,1,1-Trichloroethane	ND	50	ug/L	10
1,1,2-Trichloroethane	ND	50	ug/L	15
Trichloroethene	220	50	ug/L	15
Trichlorofluoromethane	ND	100	ug/L	15
Vinyl chloride	ND	100	ug/L	15
m-Xylene & p-Xylene	ND	50	ug/L	25
o-Xylene	ND	50	ug/L	10
	PERCENT	RECOVERY	?	
SURROGATE	RECOVERY	LIMITS		
Bromofluorobenzene	111	(75 - 12	20)	
1,2-Dichloroethane-d4	107	(65 - 13	30)	
Toluene-d8	103	(80 - 13	30)	

Client Sample ID: PTI-MW16-051

GC/MS Volatiles

Date Sampled: 10/18/01 09 Prep Date: 10/23/01 Prep Batch #: 1296396	Analysis Date Analysis Time Method	e: 10/23/01 e: 03:25	•	
		REPORTIN		MDT
PARAMETER	RESULT	LIMIT	UNITS	MDL
Benzene	ND	2.0	ug/L	0.60
Bromodichloromethane	ND	2.0	ug/L	0.60
Bromoform	ND	2.0	ug/L	0.60
Bromomethane	ND	4.0	ug/L	2.0
Carbon tetrachloride	ND	2.0	ug/L	0.60
Chlorobenzene	ND	2.0	ug/L	0.60
Dibromochloromethane	ND	2.0	ug/L	0.80
Chloroethane	ND	4.0 2.0	ug/L	0.60 0.60
Chloroform	ND	2.0 4.0	ug/L	0.60
Chloromethane	ND	2.0	ug/L	0.60
1,2-Dichlorobenzene	ND	2.0	ug/L	0.60
1,3-Dichlorobenzene	ND ND	2.0	ug/L ug/L	0.60
1,4-Dichlorobenzene 1,1-Dichloroethane	130	2.0	ug/L ug/L	0.40
1,2-Dichloroethane	49	2.0	ug/L	0.40
1,1-Dichloroethene	13	2.0	ug/L	0.60
cis-1,2-Dichloroethene	14	2.0	ug/L ug/L	0.60
trans-1,2-Dichloroethene	2.8	2.0	ug/L	0.60
1,2-Dichloropropane	ND	2.0	ug/L	0.60
cis-1,3-Dichloropropene	ND	2.0	ug/L	0.60
trans-1,3-Dichloropropene	ND	2.0	ug/L	1.0
Ethylbenzene	41	2.0	ug/L	0.40
Methylene chloride	ND	2.0	ug/L	0.60
1,1,2,2-Tetrachloroethane	ND	2.0	ug/L	0.80
Tetrachloroethene	ND	2.0	ug/L	0.60
Toluene	ND	2.0	ug/L	0.60
1,1,1-Trichloroethane	ND	2.0	ug/L	0.40
1,1,2-Trichloroethane	ND	2.0	ug/L	0.60
Trichloroethene	34	2.0	ug/L	0.60
Trichlorofluoromethane	ND	4.0	ug/L	0.60
Vinyl chloride	ND	4.0	ug/L	0.60
m-Xylene & p-Xylene	ND	2.0	ug/L	1.0
o-Xylene	ND	2.0	ug/L	0.40
	PERCENT	RECOVERY		
SURROGATE	RECOVERY	LIMITS		
Bromofluorobenzene	113	(75 - 12		
1,2-Dichloroethane-d4	120	(65 - 13		
Toluene-d8	102	(80 - 13	0)	

Client Sample ID: PTI-MW09-051

GC/MS Semivolatiles

Lot-Sample #: E1J180344-004 Date Sampled: 10/18/01 11:1 Prep Date: 10/19/01 Prep Batch #: 1292556	5 Date Received:	10/18/01 1 10/23/01 14:40	5:32 MS Run	
		REPORTING		
PARAMETER	RESULT	LIMIT	UNITS	MDL
1,4-Dioxane	75 Q	4.8	ug/L	1.6
	PERCENT	RECOVERY		
SURROGATE	RECOVERY	LIMITS		
2-Fluorophenol	0.0 NC, SRD	(30 - 120)		
Nitrobenzene-d5	0.0 NC, SRD	(30 - 120)		
NOTE(S):				

NC The recovery and/or RPD were not calculated.

SRD The surrogate recovery was not calculated because the extract was diluted beyond the ability to quantitate a recovery.

Q Elevated reporting limit. The reporting limit is elevated due to high analyte levels.

Client Sample ID: PTI-MW09-051

Lot-Sample #...: E1J180344-004 Work Order #...: EMEG21AA

GC/MS Volatiles

Matrix....: WATER

Date Sampled: 10/18/01 11: Prep Date: 10/23/01		e: 10/18/01	15:32 M.S R	un # 12	
Prep Batch #: 1296396	Analysis Time				
	Method: SW846 8260B				
		REPORTING	g.		
PARAMETER	RESULT	LIMIT	UNITS	MDL	
Benzene	ND	5.0	ug/L	1.5	
Bromodichloromethane	ND	5.0	ug/L	1.5	
Bromoform	ND	5.0	ug/L	1.5	
Bromomethane	ND	10	ug/L	5.0	
Carbon tetrachloride	ND	5.0	ug/L	1.5	
Chlorobenzene	ND	5.0	ug/L	1.5	
Dibromochloromethane	ND	5.0	ug/L	2.0	
Chloroethane	ND	10	\mathtt{ug}/\mathtt{L}	1.5	
Chloroform	110	5.0	ug/L	1.5	
Chloromethane	ND	10	ug/L	1.5	
1,2-Dichlorobenzene	ND	5.0	ug/L	1.5	
1,3-Dichlorobenzene	ND	5.0	ug/L	1.5	
1,4-Dichlorobenzene	ND	5.0	ug/L	1.5	
1,1-Dichloroethane	260	5.0	ug/L	1.0	
1,2-Dichloroethane	240	5.0	ug/L	2.0	
1,1-Dichloroethene	89	5.0	ug/L	1.5	
cis-1,2-Dichloroethene	15	5.0	ug/L	1.5	
trans-1,2-Dichloroethene	ND	5.0	ug/L	1.5	
1,2-Dichloropropane	ND	5.0	ug/L	1.5	
cis-1,3-Dichloropropene	ND	5.0	uq/L	1.5	
trans-1,3-Dichloropropene	ND	5.0	ug/L	2.5	
Ethylbenzene	8.1	5.0	uq/L	1.0	
Methylene chloride	69	5.0	ug/L	1.5	
1,1,2,2-Tetrachloroethane	ND	5.0	ug/L	2.0	
Tetrachloroethene	6.5	5.0	ug/L	1.5	
Toluene	ND	5.0	ug/L	1.5	
1,1,1-Trichloroethane	8.8	5.0	ug/L	1.0	
1,1,2-Trichloroethane	ND	5.0	ug/L	1.5	
Trichloroethene	440	5.0	ug/L	1.5	
Trichlorofluoromethane	ND	10	ug/L	1.5	
Vinyl chloride	ND	10	ug/L	1.5	
m-Xylene & p-Xylene	ND	5.0	ug/L	2.5	
o-Xylene	ND	5.0	ug/L	1.0	
	PERCENT	RECOVERY			
SURROGATE	RECOVERY	LIMITS			
Bromofluorobenzene	116	(75 - 120)		
1,2-Dichloroethane-d4	126	(65 - 130			
Toluene-d8	105	(80 - 130			

Client Sample ID: PTI-MW37-051

GC/MS Semivolatiles

Lot-Sample #: E1J180344-005 Date Sampled: 10/18/01 11:1 Prep Date: 10/19/01 Prep Batch #: 1292556	5 Date Received:	10/18/01 1 10/23/01 15:01	5:32 MS Run	
		REPORTING		
PARAMETER	RESULT	LIMIT	UNITS	MDL
1,4-Dioxane	88 Q	4.7	ug/L	1.6
	PERCENT	RECOVERY		
SURROGATE	RECOVERY	LIMITS		
2-Fluorophenol	0.0 NC, SRD	(30 - 120)		
Nitrobenzene-d5	0.0 NC, SRD	(30 - 120)		
NOTE (S) :				

NC The recovery and/or RPD were not calculated.

SRD The surrogate recovery was not calculated because the extract was diluted beyond the ability to quantitate a recovery.

Q Elevated reporting limit. The reporting limit is elevated due to high analyte levels.

Client Sample ID: PTI-MW37-051

GC/MS Volatiles

Lot-Sample #:	E1J180344-005	Work Order #:	EMEG81AA	Matrix:	WATER
Date Sampled:	10/18/01 11:15	Date Received:	10/18/01 15:32	MS Run #:	1296208
Prep Date:	10/23/01	Analysis Date:	10/23/01		
Prep Batch #:	1296396	Analysis Time:	04:24		
		Method:	SW846 8260B		
			REPORTING		
DADAMETED		PESULT	T.TMTT UNIT	TS MDI.	

		TOT ONLT I		
PARAMETER	RESULT	LIMIT	UNITS	MDL
Benzene	ND	5.0	ug/L	1.5
Bromodichloromethane	ND	5.0	ug/L	1.5
Bromoform	ND	5.0	ug/L	1.5
Bromomethane	ND	10	ug/L	5.0
Carbon tetrachloride	ND	5.0	ug/L	1.5
Chlorobenzene	ND	5.0	ug/L	1.5
Dibromochloromethane	ND	5.0	ug/L	2.0
Chloroethane	ND	10	ug/L	1.5
Chloroform	65	5.0	ug/L	1.5
Chloromethane	ND	10	ug/L	1.5
1,2-Dichlorobenzene	ND	5.0	ug/L	1.5
1,3-Dichlorobenzene	ND	5.0	ug/L	1.5
1,4-Dichlorobenzene	ND	5.0	ug/L	1.5
1,1-Dichloroethane	160	5.0	ug/L	1.0
1,2-Dichloroethane	250	5.0	ug/L	2.0
1,1-Dichloroethene	64	5.0	ug/L	1.5
cis-1,2-Dichloroethene	7.6	5.0	ug/L	1.5
trans-1,2-Dichloroethene	ND	5.0	ug/L	1.5
1,2-Dichloropropane	ND	5.0	ug/L	1.5
cis-1,3-Dichloropropene	ND	5.0	ug/L	1.5
trans-1,3-Dichloropropene	ND	5.0	ug/L	2.5
Ethylbenzene	33	5.0	ug/L	1.0
Methylene chloride	68	5.0	ug/L	1.5
1,1,2,2-Tetrachloroethane	ND	5.0	ug/L	2.0
Tetrachloroethene	ND	5.0	ug/L	1.5
Toluene	ND	5.0	ug/L	1.5
1,1,1-Trichloroethane	ND	5.0	ug/L	1.0
1,1,2-Trichloroethane	ND	5.0	ug/L	1.5
Trichloroethene	340	5.0	ug/L	1.5
Trichlorofluoromethane	ND	10	ug/L	1.5
Vinyl chloride	ND	10	ug/L	1.5
m-Xylene & p-Xylene	ND	5.0	ug/L	2.5
o-Xylene	ND	5.0	ug/L	1.0
	PERCENT	RECOVER	Y	
SURROGATE	RECOVERY	LIMITS		
Bromofluorobenzene	110	(75 - 12	20)	
1,2-Dichloroethane-d4	128	(65 - 13	30)	

	PERCENT	RECOVERY
SURROGATE	RECOVERY	LIMITS
Bromofluorobenzene	110	(75 - 120)
1,2-Dichloroethane-d4	128	(65 - 130)
Toluene-d8	101	(80 - 130)

Client Sample ID: PTI-MW7-051

GC/MS Volatiles

Lot-Sample #: E1J180344-00 Date Sampled: 10/18/01 13				Run #:
Prep Date: 10/23/01	Analysis Date			
Prep Batch #: 1296396	Analysis Time		_	
Trop basen " Ilyanya	Method		260B	
	11001100111111	5510 0	2002	
		REPORTI	NG	
PARAMETER	RESULT	LIMIT	UNITS	MDL
Benzene	ND	2.0	ug/L	0.60
Bromodichloromethane	ND	2.0	ug/L	0.60
Bromoform	ND	2.0	ug/L	0.60
Bromomethane	ND	4.0	ug/L	2.0
Carbon tetrachloride	ND	2.0	ug/L	0.60
Chlorobenzene	ND	2.0	ug/L	0.60
Dibromochloromethane	ND	2.0	ug/L	0.80
Chloroethane	ND	4.0	ug/L	0.60
Chloroform	2.8	2.0	ug/L	0.60
Chloromethane	ND	4.0	ug/L	0.60
1,2-Dichlorobenzene	ND	2.0	ug/L	0.60
1,3-Dichlorobenzene	ND	2.0	ug/L	0.60
1,4-Dichlorobenzene	ND	2.0	ug/L	0.60
1,1-Dichloroethane	78	2.0	ug/L	0.40
1,2-Dichloroethane	27	2.0	ug/L	0.80
1,1-Dichloroethene	16	2.0	ug/L	0.60
cis-1,2-Dichloroethene	36	2.0	ug/L	0.60
trans-1,2-Dichloroethene	4.8	2.0	ug/L	0.60
1,2-Dichloropropane	ND	2.0	ug/L	0.60
cis-1,3-Dichloropropene	ND	2.0	ug/L	0.60
trans-1,3-Dichloropropene	ND	2.0	ug/L	1.0
Ethylbenzene	2.0	2.0	ug/L	0.40
Methylene chloride	ND	2.0	ug/L	0.60
1,1,2,2-Tetrachloroethane	ND	2.0	ug/L	0.80
Tetrachloroethene	ND	2.0	ug/L	0.60
Toluene	ND	2.0	ug/L	0.60
1,1,1-Trichloroethane	ND	2.0	ug/L	0.40
1,1,2-Trichloroethane	ND	2.0	ug/L	0.60
Trichloroethene	160	2.0	ug/L	0.60
Trichlorofluoromethane	ND	4.0	ug/L	0.60
Vinyl chloride	ND	4.0	ug/L	0.60
m-Xylene & p-Xylene	ND	2.0	ug/L	1.0
o-Xylene	ND	2.0	ug/L	0.40
			J, –	
	PERCENT	RECOVER	Y	
SURROGATE	RECOVERY	LIMITS		
Bromofluorobenzene	117	(75 - 1	20)	
1,2-Dichloroethane-d4	119	(65 - 1		
Toluene-d8	105	(80 - 1		

Client Sample ID: PTI-MW11-051

GC/MS Semivolatiles

Lot-Sample #: E1J180344-007 Date Sampled: 10/18/01 14:30 Prep Date: 10/19/01 Prep Batch #: 1292556		10/18/01 15 10/22/01		#:	WATER
Frep Batch # 1292330	Method:		C SIM		
PARAMETER 1,4-Dioxane	RESULT 12	REPORTING LIMIT 0.95	UNITS ug/L	MDL 0.33	
SURROGATE 2-Fluorophenol Nitrobenzene-d5	PERCENT RECOVERY 50 71	RECOVERY <u>LIMITS</u> (30 - 120) (30 - 120)			

Client Sample ID: PTI-MW11-051

GC/MS Volatiles

Prep Date: 10/23/01 Prep Batch #: 1296396	Analysis Date Analysis Time Method	: 05:24	ОВ	
		REPORTING		
PARAMETER	RESULT	LIMIT	UNITS	MDL
Benzene	ND	25	ug/L	7.5
Bromodichloromethane	ND	25	ug/L	7.5
Bromoform	ND	25	ug/L	7.5
Bromomethane	ND	50	ug/L	25
Carbon tetrachloride	ND	25	ug/L	7.5
Chlorobenzene	ND	25	ug/L	7.5
Dibromochloromethane	ND	25	ug/L	10
Chloroethane	ND	50	ug/L	7.5
Chloroform	50	25	ug/L	7.5
Chloromethane	ND	50	ug/L	7.5
1,2-Dichlorobenzene	ND	25	ug/L	7.5
1,3-Dichlorobenzene	ND	25	ug/L	7.5
1,4-Dichlorobenzene	ND	25	ug/L	7.5
1,1-Dichloroethane	410	25	ug/L	5.0
1,2-Dichloroethane	ND	25	ug/L	10
1,1-Dichloroethene	98	25	ug/L	7.5
cis-1,2-Dichloroethene	51	25	ug/L	7.5
trans-1,2-Dichloroethene	ND	25	ug/L	7.5
1,2-Dichloropropane	ND	25	ug/L	7.5
cis-1,3-Dichloropropene	ND	25	ug/L	7.5
trans-1,3-Dichloropropene	ND	25	ug/L	12
Ethylbenzene	90	25	ug/L	5.0
Methylene chloride	ND	25	ug/L	7.5
1,1,2,2-Tetrachloroethane	ND	25	ug/L	10
Tetrachloroethene	ND	25	ug/L	7.5
Toluene	ND	25	ug/L	7.5
1,1,1-Trichloroethane	27	25	ug/L	5.0
1,1,2-Trichloroethane	ND	25	ug/L	7.5
Trichloroethene	1500	25	ug/L	7.5
Trichlorofluoromethane	ND	50	ug/L	7.5
Vinyl chloride	ND	50	ug/L	7.5
m-Xylene & p-Xylene	97	25	ug/L	12
o-Xylene	ND	25	ug/L	5.0
	PERCENT	RECOVERY		
SURROGATE	RECOVERY	LIMITS	_	
Bromofluorobenzene	116	(75 - 120)		
1,2-Dichloroethane-d4	110	(65 - 130)		
Toluene-d8	105	(80 - 130)		

Client Sample ID: PTI-EB02-051

GC/MS Semivolatiles

Lot-Sample #: E1J180344-008 Date Sampled: 10/18/01 12:40 Prep Date: 10/19/01 Prep Batch #: 1292556		10/18/01 1 10/22/01 23:38	5:32 MS Run	: #:	WATER
PARAMETER 1,4-Dioxane	RESULT ND	REPORTING LIMIT 0.95	UNITS ug/L	MDL 0.33	
SURROGATE 2-Fluorophenol Nitrobenzene-d5	PERCENT RECOVERY 73 78	RECOVERY LIMITS (30 - 120) (30 - 120)			

Client Sample ID: PTI-EB02-051

GC/MS Volatiles

Lot-Sample #: E1	LJ180344-008 Work	Order #:	EMEHE1AA	Matrix:	WATER
Date Sampled: 10	0/18/01 12:40 Date	Received:	10/18/01 15:32	MS Run #:	1296208
Prep Date: 10	0/22/01 Analy	ysis Date:	10/22/01		
Prep Batch #: 12	296396 Analy	ysis Time:	22:26		
	Woth	. b.	CM016 0360D		

		REPORTIN	1G	
PARAMETER	RESULT	LIMIT	UNITS	MDL
Benzene	ND	1.0	ug/L	0.30
Bromodichloromethane	ND	1.0	ug/L	0.30
Bromoform	ND	1.0	ug/L	0.30
Bromomethane	ND	2.0	ug/L	1.0
Carbon tetrachloride	ND	1.0	ug/L	0.30
Chlorobenzene	ND	1.0	ug/L	0.30
Dibromochloromethane	1.0	1.0	ug/L	0.40
Chloroethane	ND	2.0	ug/L	0.30
Chloroform	2.0	1.0	ug/L	0.30
Chloromethane	ND	2.0	ug/L	0.30
1,2-Dichlorobenzene	ND	1.0	ug/L	0.30
1,3-Dichlorobenzene	ND	1.0	ug/L	0.30
1,4-Dichlorobenzene	ND	1.0	ug/L	0.30
1,1-Dichloroethane	ND	1.0	ug/L	0.20
1,2-Dichloroethane	ND	1.0	ug/L	0.40
1,1-Dichloroethene	ND	1.0	ug/L	0.30
cis-1,2-Dichloroethene	ND	1.0	ug/L	0.30
trans-1,2-Dichloroethene	ND	1.0	ug/L	0.30
1,2-Dichloropropane	ND	1.0	ug/L	0.30
cis-1,3-Dichloropropene	ND	1.0	ug/L	0.30
trans-1,3-Dichloropropene	ND	1.0	ug/L	0.50
Ethylbenzene	ND	1.0	ug/L	0.20
Methylene chloride	ND	1.0	ug/L	0.30
1,1,2,2-Tetrachloroethane	ND	1.0	ug/L	0.40
Tetrachloroethene	ND	1.0	ug/L	0.30
Toluene	ND	1.0	ug/L	0.30
1,1,1-Trichloroethane	ND	1.0	ug/L	0.20
1,1,2-Trichloroethane	ND	1.0	ug/L	0.30
Trichloroethene	ND	1.0	ug/L	0.30
Trichlorofluoromethane	ND	2.0	ug/L	0.30
Vinyl chloride	ND	2.0	ug/L	0.30
m-Xylene & p-Xylene	ND	1.0	ug/L	0.50
o-Xylene	ND	1.0	ug/L	0.20
	PERCENT	RECOVERY		
SURROGATE	RECOVERY	LIMITS		
Bromofluorobenzene	117	(75 - 12	0)	
1,2-Dichloroethane-d4	107	(65 - 13	0)	
Toluene-d8	107	(80 - 13	0)	

Client Sample ID: PTI-MW4-051

General Chemistry

Lot-Sample #:	E1J180344-001	Work Order #: EMEGR	Matrix WATER
	and the second s		

Date Sampled...: 10/18/01 08:30 Date Received..: 10/18/01 15:32

рH	6.9	0.10	No Units	SW846 9040B	10/18/01	1291497
PARAMETER	RESULT	RL	UNITS	METHOD	ANALYSIS DATE	BATCH #
					PREPARATION-	PREP

Client Sample ID: PTI-MW35-051

General Chemistry

Lot-Sample #:	E1J180344-002	Work Order #:	EMEGW	Matrix WATER

Date Sampled...: 10/18/01 08:30 Date Received..: 10/18/01 15:32

 PARAMETER
 RESULT
 RL
 UNITS
 METHOD
 ANALYSIS DATE
 BATCH #

 pH
 6.8
 0.10
 No Units
 SW846 9040B
 10/18/01
 1291497

Client Sample ID: PTI-MW16-051

General Chemistry

Lot-Sample #:	E1J180344-003	Work Order #:	EMEGX	Matrix:	WATER
	/ /	1	10/10/01 15 00		

Date Sampled...: 10/18/01 09:50 Date Received..: 10/18/01 15:32

рН	7.0	0.10	No Units	SW846 9040B	10/18/01	1291497
PARAMETER	RESULT	RL	UNITS	METHOD	ANALYSIS DATE	BATCH #
					PREPARATION-	PREP

Analysis Time..: 17:14 MS Run #.....: 1291271 MDL.....

Client Sample ID: PTI-MW09-051

General Chemistry

Lot-Sample #:	E1J180344-004	Work Order #: EMEG2	Matrix: WATER
. before? atd	10/19/01 11:15	Date Peceived . 10/18/01 1	15.32

Date Sampled...: 10/18/01 11:15 Date Received..: 10/18/01 15:32

рН	6.9	0.10	No Units	SW846 9040B	10/18/01	1291497
PARAMETER	RESULT	RL	UNITS	METHOD	ANALYSIS DATE	BATCH #
					PREPARATION-	PREP

Analysis Time..: 17:16 MS Run #.....: 1291271 MDL.....

Client Sample ID: PTI-MW37-051

General Chemistry

Lot-Sample #: E1J180344-005	Work Order #: EMEG8	Matrix: WATER
Date Sampled: 10/18/01 11:15	Date Received: 10/18/01 15:3	2

pН	6.9	0.10	No Units	SW846 9040B	10/18/01	1291497
PARAMETER	RESULT	RL	UNITS	METHOD	ANALYSIS DATE	BATCH #
					PREPARATION-	PREP

Client Sample ID: PTI-MW7-051

General Chemistry

Lot-Sample #:	E1J180344-006	Work Order #:	EMEG9	Matrix:	WATER
D-4- C1-4	10/10/01 12 05	Date Desaiss	10/10/01 15 20		

Date Sampled...: 10/18/01 13:25 Date Received..: 10/18/01 15:32

					PREPARATION-	PREP
PARAMETER	RESULT	RL	UNITS	METHOD	ANALYSIS DATE	BATCH #
pН	6.7	0.10	No Units	SW846 9040B	10/18/01	1291497

Analysis Time..: 17:20 MS Run #.....: 1291271 MDL.....

000033

Client Sample ID: PTI-MW11-051

General Chemistry

Lot-Sample #:	E1J180344-007	Work Order #: EMEHC	Matrix W	VATER
D-t- C1-4	10/10/01 14.20	Date Received . 10/10/01	1 15.22	

Date Sampled...: 10/18/01 14:30 Date Received..: 10/18/01 15:32

 PARAMETER
 RESULT
 RL
 UNITS
 METHOD
 ANALYSIS
 DATE
 BATCH #

 pH
 6.7
 0.10
 No Units
 SW846
 9040B
 10/18/01
 1291497

Analysis Time..: 17:22 MS Run #.....: 1291271 MDL.....

Client Sample ID: PTI-EB02-051

General Chemistry

Lot-Sample #: E	E1J180344-008	Work Order	#:	EMEHE	Matrix:	WATER

Date Sampled...: 10/18/01 12:40 Date Received..: 10/18/01 15:32

На	7.2	0.10	No Units	SW846 9040B	10/18/01	1291497
PARAMETER	RESULT	RL	UNITS	METHOD	ANALYSIS DATE	BATCH #
					PREPARATION-	PREP

Analysis Time..: 17:24 MS Run #.....: 1291271 MDL.....

Client Sample ID: PTI-MW4-051

TOTAL Metals

•	E1J18034 L: 10/18/01		Received.	: 10/18/01 15:32	Matrix: WATER
		REPORTI	NG		PREPARATION- WORK
PARAMETER	RESULT	LIMIT	UNITS	METHOD	ANALYSIS DATE ORDER #
Prep Batch #	1292194				
Cadmium	0.44	0.010	mg/L	SW846 6010B	10/19-10/22/01 EMEGR1A
		Analysis Tim	ne: 13:07	MS Run #: 129	95174 MDL 0.0012
Chromium	39.8	0.020	mg/L	SW846 6010B	10/19-10/22/01 EMEGR1A
		Analysis Tim	ne: 13:07	MS Run #: 129	95174 MDL 0.0020
Copper	ND G	0.050	mg/L	SW846 6010B	10/19-10/22/01 EMEGR1A
		Analysis Tim	ne: 13:07	MS Run #: 129	95174 MDL 0.0080
NOTE(S).					

G Elevated reporting limit. The reporting limit is elevated due to matrix interference.

Client Sample ID: PTI-MW35-051

TOTAL Metals

-	: E1J18034				Matrix: WATER
Date Sampled.	: 10/18/01	. 08:30 Date	Received.	.: 10/18/01 15:32	
		REPORTIN	G		PREPARATION- WORK
PARAMETER	RESULT	LIMIT	UNITS	METHOD	ANALYSIS DATE ORDER #
Prep Batch #.	: 1292194				
Cadmium	0.40	0.010	mg/L	SW846 6010B	10/19-10/22/01 EMEGW1AC
		Analysis Time	e: 13:15	MS Run #: 129	5174 MDL 0.0012
Chromium	28.9	0.020	mg/L	SW846 6010B	10/19-10/22/01 EMEGW1AD
		Analysis Time	e: 13:15	MS Run #: 129	5174 MDL 0.0020
Copper	ND G	0.050	mg/L	SW846 6010B	10/19-10/22/01 EMEGW1AE
		Analysis Time	. 12.15	MC Dun # . 129	5174 MDL 0.0080

G Elevated reporting limit. The reporting limit is elevated due to matrix interference.

Client Sample ID: PTI-MW16-051

TOTAL Metals

Lot-Sample #...: E1J180344-003 Matrix....: WATER

Date Sampled...: 10/18/01 09:50 Date Received..: 10/18/01 15:32

PARAMETER	RESULT	REPORTING LIMIT UNITS	METHOD	PREPARATION- WORK ANALYSIS DATE ORDER #
Prep Batch #	: 1292194			
Cadmium	ND	0.0050 mg/L	SW846 6010B	10/19-10/20/01 EMEGX1AC
		Analysis Time: 00:56	MS Run #: 12	95174 MDL 0.00060
Chromium	ND	0.010 mg/L	SW846 6010B	10/19-10/20/01 EMEGX1AD
		Analysis Time: 00:56	MS Run #: 12	95174 MDL 0.0010
Copper	ND	0.025 mg/L	SW846 6010B	10/19-10/20/01 EMEGX1AE
••		Analysis Time: 00:56	MS Run #: 12	95174 MDL 0.0040

Client Sample ID: PTI-MW09-051

TOTAL Metals

Matrix....: WATER

MS Run #....: 1295174 MDL..... 0.00060

Analysis Time..: 01:41

Lot-Sample #...: E1J180344-004

Chromium 0.010 mg/L SW846 6010B 10/19-10/20/01 EMEG21AD 1.3 Analysis Time..: 01:41 MS Run #....: 1295174 MDL....: 0.0010 10/19-10/20/01 EMEG21AE Copper ND 0.025 mg/L SW846 6010B Analysis Time..: 01:41 MS Run #....: 1295174 MDL..... 0.0040

Client Sample ID: PTI-MW37-051

TOTAL Metals

Lot-Sample #...: E1J180344-005 Matrix....: WATER

Date Sampled...: 10/18/01 11:15 Date Received..: 10/18/01 15:32

DADAMETED	DECIH T	REPORTING	IDITEC	METHOD	PREPARATION-	WORK
PARAMETER	RESULT	LIMIT	UNITS	METHOD	ANALYSIS DATE	ORDER #
Prep Batch #	: 1292194					
Cadmium	ND	0.0050	mg/L	SW846 6010B	10/19-10/20/01	EMEG81AC
		Analysis Time.	.: 01:50	MS Run #: 12	95174 MDL	: 0.00060
Chromium	1.4	0.010	mg/L	SW846 6010B	10/19-10/20/01	EMEG81AD
		Analysis Time.	.: 01:50	MS Run #: 12	95174 MDL	: 0.0010
Copper	ND	0.025	mg/L	SW846 6010B	10/19-10/20/01	EMEG81AE
		Analysis Time.	: 01:50	MS Run #: 12	95174 MDL	: 0.0040

Client Sample ID: PTI-MW7-051

TOTAL Metals

-	Date Sampled			eceived	: 10/18/01 15:32	Matrix: WAILR	
	DADAMERED	DECIT #	REPORTING	UNITS	METHOD	PREPARATION- WORK ANALYSIS DATE ORDER	#
	PARAMETER	RESULT	LIMIT	ONIIS	METHOD	ANALISIS DATE ORDER	#
	Prep Batch #	: 1292194					
-	Cadmium	ND G	0.010	mg/L	SW846 6010B	10/19-10/22/01 EMEG91	1AC
			Analysis Time.	.: 13:23	MS Run #: 12951	74 MDL 0.0012	2
	Chromium	ND G	0.020	mg/L	SW846 6010B	10/19-10/22/01 EMEG91	1AD
-			Analysis Time	.: 13:23	MS Run #: 12951	74 MDL 0.0020)
	Copper	0.073	0.050	mg/L	SW846 6010B	10/19-10/22/01 EMEG93	1AB
-			Analysis Time	.: 13:23	MS Run #: 12951	74 MDL	5

NOTE (S): $G \ \ \text{Elevated reporting limit. The reporting limit is elevated due to matrix interference.}$

Client Sample ID: PTI-MW11-051

TOTAL Metals

Lot-Sample #...: E1J180344-007 Matrix.....: WATER

Date Sampled...: 10/18/01 14:30 Date Received..: 10/18/01 15:32

PARAMETER	RESULT	REPORTING LIMIT UNITS	METHOD	PREPARATION- WORK ANALYSIS DATE ORDER #
Prep Batch #	: 1292194			
Cadmium	ND	0.0050 mg/L	SW846 6010B	10/19-10/20/01 EMEHC1AC
		Analysis Time: 02:06	MS Run #: 129	5174 MDL 0.00060
Chromium	ND	0.010 mg/L	SW846 6010B	10/19-10/20/01 EMEHC1AD
		Analysis Time: 02:06	MS Run #: 129	5174 MDL 0.0010
Copper	ND	0.025 mg/L	SW846 6010B	10/19-10/20/01 EMEHC1AE
		Analysis Time: 02:06	MS Run #: 129	5174 MDL 0.0040

Client Sample ID: PTI-EB02-051

TOTAL Metals

-	Lot-Sample	#:	E1J180344-008	Matrix	WATER
		_			

Date Sampled...: 10/18/01 12:40 Date Received..: 10/18/01 15:32

PARAMETER	RESULT	REPORTING LIMIT UNITS		PREPARATION- WORK ANALYSIS DATE ORDER #
Prep Batch #.	: 1292194			
Cadmium	ND	0.0050 mg/L	SW846 6010B	10/19-10/20/01 EMEHE1AC
		Analysis Time: 02:15	MS Run #: 1295174	MDL 0.00060
Chromium	ND	0.010 mg/L	SW846 6010B	10/19-10/20/01 EMEHE1AD
		Analysis Time: 02:15	MS Run #: 1295174	MDL 0.0010
Copper	ND	0.025 mg/L	SW846 6010B	10/19-10/20/01 EMEHE1AE
		Analysis Time 02:15	MS Run # 1295174	MDI 0 0040

QA/QC

000044

QC DATA ASSOCIATION SUMMARY

E1J180344

Sample Preparation and Analysis Control Numbers

-	SAMPLE#	MATRIX	ANALYTICAL METHOD	LEACH BATCH #	PREP BATCH #	MS RUN#
	001	WATER	SW846 8270C SIM		1292556	
		WATER	SW846 9040B		1291497	1291271
		WATER	SW846 8260B		1296396	1296208
		WATER	SW846 6010B		1292194	1295174
	002	WATER	SW846 8270C SIM		1292556	
		WATER	SW846 9040B		1291497	1291271
		WATER	SW846 8260B		1296396	1296208
		WATER	SW846 6010B		1292194	1295174
	003	WATER	SW846 9040B		1291497	1291271
und.		WATER	SW846 8260B		1296396	1296208
		WATER	SW846 6010B		1292194	1295174
	004	WATER	SW846 8270C SIM		1292556	
-		WATER	SW846 9040B		1291497	1291271
		WATER	SW846 8260B		1296396	1296208
		WATER	SW846 6010B		1292194	1295174
-	005	WATER	SW846 8270C SIM		1292556	
		WATER	SW846 9040B		1291497	1291271
		WATER	SW846 8260B		1296396	1296208
		WATER	SW846 6010B		1292194	1295174
	006	WATER	SW846 9040B		1291497	1291271
		WATER	SW846 8260B		1296396	1296208
		WATER	SW846 6010B		1292194	1295174
	007	WATER	SW846 8270C SIM		1292556	
		WATER	SW846 9040B		1291497	1291271
_		WATER	SW846 8260B		1296396	1296208
		WATER	SW846 6010B		1292194	1295174
	008	WATER	SW846 8270C SIM		1292556	
		WATER	SW846 9040B		1291497	1291271
		WATER	SW846 8260B		1296396	1296208
		WATER	SW846 6010B		1292194	1295174

METHOD BLANK REPORT

GC/MS Semivolatiles

Client Lot #...: E1J180344 Work Order #...: EMG681AA Matrix....: WATER

MB Lot-Sample #: G1J190000-556

Prep Date....: 10/19/01 Analysis Time..: 18:25 Analysis Date..: 10/22/01 **Prep Batch #...:** 1292556

REPORTING

PARAMETER RESULT LIMIT UNITS METHOD 1,4-Dioxane ND 1.0 ug/L SW846 8270C SIM

PERCENT RECOVERY SURROGATE RECOVERY LIMITS 2-Fluorophenol 78 (30 - 120)

Nitrobenzene-d5 86 (30 - 120)

NOTE(S):

METHOD BLANK REPORT

GC/MS Volatiles

Client Lot #...: E1J180344 Work Order #...: EMLW61AA Matrix..... WATER

MB Lot-Sample #: E1J230000-396

		REPORTI	NG	
PARAMETER	RESULT	LIMIT	UNITS	METHOD
Benzene	ND	1.0	ug/L	SW846 8260B
Bromodichloromethane	ND	1.0	ug/L	SW846 8260B
Bromoform	ND	1.0	ug/L	SW846 8260B
Bromomethane	ND	2.0	ug/L	SW846 8260B
Carbon tetrachloride	ND	1.0	ug/L	SW846 8260B
Chlorobenzene	ND	1.0	ug/L	SW846 8260B
Dibromochloromethane	ND	1.0	ug/L	SW846 8260B
Chloroethane	ND	2.0	ug/L	SW846 8260B
Chloroform	ND	1.0	ug/L	SW846 8260B
Chloromethane	ND	2.0	ug/L	SW846 8260B
1,2-Dichlorobenzene	ND	1.0	ug/L	SW846 8260B
1,3-Dichlorobenzene	ND	1.0	ug/L	SW846 8260B
1,4-Dichlorobenzene	ND	1.0	ug/L	SW846 8260B
1,1-Dichloroethane	ND	1.0	ug/L	SW846 8260B
1,2-Dichloroethane	ND	1.0	ug/L	SW846 8260B
1,1-Dichloroethene	ND	1.0	ug/L	SW846 8260B
cis-1,2-Dichloroethene	ND	1.0	ug/L	SW846 8260B
trans-1,2-Dichloroethene	ND	1.0	ug/L	SW846 8260B
1,2-Dichloropropane	ND	1.0	ug/L	SW846 8260B
cis-1,3-Dichloropropene	ND	1.0	ug/L	SW846 8260B
trans-1,3-Dichloropropene	ND	1.0	ug/L	SW846 8260B
Ethylbenzene	ND	1.0	ug/L	SW846 8260B
Methylene chloride	ND	1.0	ug/L	SW846 8260B
1,1,2,2-Tetrachloroethane	ND	1.0	ug/L	SW846 8260B
Tetrachloroethene	ND	1.0	ug/L	SW846 8260B
Toluene	ND	1.0	ug/L	SW846 8260B
1,1,1-Trichloroethane	ND	1.0	ug/L	SW846 8260B
1,1,2-Trichloroethane	ND	1.0	${\tt ug/L}$	SW846 8260B
Trichloroethene	ND	1.0	ug/L	SW846 8260B
Trichlorofluoromethane	ND	2.0	ug/L	SW846 8260B
Vinyl chloride	ND	2.0	ug/L	SW846 8260B
m-Xylene & p-Xylene	ND	1.0	ug/L	SW846 8260B
o-Xylene	ND	1.0	ug/L	SW846 8260B
	PERCENT	RECOVER	Y	
SURROGATE	RECOVERY	LIMITS		
Bromofluorobenzene	112	(75 - 1	20)	
1,2-Dichloroethane-d4	102	(65 - 13	30)	
Toluene-d8	105	(80 - 13	30)	

NOTE(S):

METHOD BLANK REPORT

TOTAL Metals

Client Lot #...: E1J180344 Matrix.....: WATER

PARAMETER	RESULT	REPORTING LIMIT	UNITS	METHOD	PREPARATION- WORK ANALYSIS DATE ORDER #
MB Lot-Sample	#: E1J190000-1	94 Prep Ba	atch #: 1	1292194	
Cadmium	ND	0.0050	mg/L	SW846 6010B	10/19-10/20/01 EME711AA
		Analysis Time	: 00:24		
Chromium	ND	0.010	mq/L	SW846 6010B	10/19-10/20/01 EME711AC
		Analysis Time	3.		
Copper	ND	0.025	mg/L	SW846 6010B	10/19-10/20/01 EME711AD
		Analysis Time	: 00:24		
NOTE(S):					

GC/MS Semivolatiles

Client Lot #...: E1J180344 Work Order #...: EMG681AC-LCS Matrix..... WATER

LCS Lot-Sample#: G1J190000-556 EMG681AD-LCSD

 Prep Date.....: 10/19/01
 Analysis Date..: 10/22/01

 Prep Batch #...: 1292556
 Analysis Time..: 18:46

	SPIKE	MEASURED		PERCENT		
PARAMETER	AMOUNT	AMOUNT	UNITS	RECOVERY	RPD	METHOD
1,4-Dioxane	10.0	4.32	ug/L	43		SW846 8270C SIM
	10.0	4.57	ug/L	46	5.6	SW846 8270C SIM
			PERCENT	RECOVERY		
SURROGATE			RECOVERY	LIMITS	_	
2-Fluorophenol			77	(30 - 120)	
			75	(30 - 120)	
Nitrobenzene-d5			84	(30 - 120)	
			88	(30 - 120)	

NOTE(S):

Calculations are performed before rounding to avoid round-off errors in calculated results.

GC/MS Semivolatiles

Client Lot #...: E1J180344 Work Order #...: EMG681AC-LCS Matrix....: WATER

LCS Lot-Sample#: G1J190000-556 EMG681AD-LCSD

Prep Date....: 10/19/01 Analysis Date..: 10/22/01 **Prep Batch #...:** 1292556 Analysis Time..: 18:46

	PERCENT	RECOVERY	RPD	
PARAMETER	RECOVERY	LIMITS F	RPD LIMITS	METHOD
1,4-Dioxane	43	(30 - 120)		SW846 8270C SIM
	46	(30 - 120) 5	5.6 (0-35)	SW846 8270C SIM

	PERCENT	RECOVERY
SURROGATE	RECOVERY	LIMITS
2-Fluorophenol	77	(30 - 120)
	75	(30 - 120)
Nitrobenzene-d5	84	(30 - 120)
	88	(30 - 120)

NOTE(S):

Calculations are performed before rounding to avoid round-off errors in calculated results.

GC/MS Volatiles

Client Lot #...: E1J180344 Work Order #...: EMLW61AC Matrix.....: WATER

LCS Lot-Sample#: E1J230000-396

 Prep Date....: 10/22/01
 Analysis Date..: 10/22/01

 Prep Batch #...: 1296396
 Analysis Time..: 19:27

	SPIKE	MEASURED		PERCENT	
PARAMETER	AMOUNT	AMOUNT	UNITS	RECOVERY	METHOD
Benzene	10.0	9.34	ug/L	93	SW846 8260B
Chlorobenzene	10.0	9.55	ug/L	96	SW846 8260B
1,1-Dichloroethene	10.0	9.01	ug/L	90	SW846 8260B
Toluene	10.0	9.74	ug/L	97	SW846 8260B
Trichloroethene	10.0	9.68	ug/L	97	SW846 8260B

	PERCENT	RECOVERY		
SURROGATE	RECOVERY	LIMITS		
Bromofluorobenzene	114	(75 - 120)		
1,2-Dichloroethane-d4	100	(65 - 130)		
Toluene-d8	106	(80 - 130)		

NOTE(S):

Calculations are performed before rounding to avoid round-off errors in calculated results.

General Chemistry

Client Lot #...: E1J180344 Matrix.....: WATER

Analysis Time..: 17:06

NOTE(S):

TOTAL Metals

Client Lot #	: E1J	180344					Matrix:	WATER
	SPIKE	MEASURE	ED	PERCNT			PREPARATION-	WORK
PARAMETER	AMOUNT	AMOUNT	UNITS	RECVRY	METHOL)	ANALYSIS DATE	ORDER #
LCS Lot-Samp	ole#: E1J	190000-1	94 Prep Bat	tch #	: 12921	194		
Cadmium	0.0500	0.0510	mg/L	102	SW846	6010B	10/19-10/20/01	EME711A
			Analysis Time.	.: 00:31				
Chromium	0.200	0.207	mg/L	103	SW846	6010B	10/19-10/20/01	EME711A
			Analysis Time.	.: 00:31				
Copper	0.250	0.251	mg/L	100	SW846	6010B	10/19-10/20/01	EME711A
			Analysis Time.	.: 00:31				

GC/MS Volatiles

Client Lot #...: E1J180344 Work Order #...: EMLW61AC Matrix....: WATER

LCS Lot-Sample#: E1J230000-396

Prep Date....: 10/22/01 Analysis Date..: 10/22/01 **Prep Batch #...:** 1296396 Analysis Time..: 19:27

PARAMETER Benzene Chlorobenzene 1,1-Dichloroethene Toluene Trichloroethene	PERCENT RECOVERY 93 96 90 97	RECOVERY LIMITS (75 - 120) (80 - 120) (70 - 130) (80 - 120) (75 - 130)	METHOD SW846 8260B SW846 8260B SW846 8260B SW846 8260B SW846 8260B
SURROGATE Bromofluorobenzene 1,2-Dichloroethane-d4 Toluene-d8		PERCENT RECOVERY 114 100 106	RECOVERY LIMITS (75 - 120) (65 - 130) (80 - 130)

NOTE(S):

Calculations are performed before rounding to avoid round-off errors in calculated results.

General Chemistry

Client Lot #...: E1J180344 Matrix.....: WATER

PARAMETER RECOVERY METHOD ANALYSIS DATE BATCH #
PH Work Order #: EMEKQ1AA LCS Lot-Sample#: E1J180000-497

100 (90 - 110) SW846 9040B 10/18/01 1291497

Analysis Time..: 17:06

NOTE(S):

TOTAL Metals

Client Lot #:	E1J180344			Matrix: WATER			
PARAMETER	PERCENT RECOVERY	RECOVERY LIMITS	METHOD	PREPARATION - ANALYSIS DATE	WORK ORDER #		
LCS Lot-Sample#:	E1J190000-	194 Prep Ba	tch #: 1292194				
Cadmium	102	(80 - 120)	SW846 6010B	10/19-10/20/01	EME711AE		
		Analysis Time.	.: 00:31				
Chromium	103	(85 - 120)	SW846 6010B	10/19-10/20/01	EME711AF		
		Analysis Time.	.: 00:31				
Copper	100	(80 - 120)	SW846 6010B	10/19-10/20/01	EME711AG		
		Analysis Time.	.: 00:31				

MATRIX SPIKE SAMPLE DATA REPORT

TOTAL Metals

Client Lot	t #:	E1J18	0344					Matr	ix WAT	ER
Date Samp	led:	10/18	/01 09:50	Date Rece	eived: 10	0/18/	01 15:3	32		
	SAMPLE	SPIKE	MEASURED		PERCNT				PREPARATION-	WORK
PARAMETER	AMOUNT	<u>AMT</u>	AMOUNT	UNITS	RECVRY	RPD_	METHOI)	ANALYSIS DATE	ORDER
MS Lot-Sar	mple #:	E1J18	0344-003	Prep Bato	h #: 12	292194	1			
Cadmium	_									
	ND	0.050	0.0507	mg/L	101		SW846	6010B	10/19-10/20/01	EMEGX:
	ND	0.050	0.0506	mg/L	101	0.37	SW846	6010B	10/19-10/20/01	EMEGX
			Ana]	lysis Time:	01:10					
			MS F	Run #:	1295174					
Chromium										
	ND	0.200	0.208	mg/L	103		SW846	6010B	10/19-10/20/01	EMEGX:
	ND	0.200	0.206	mg/L	102	0.72	SW846	6010B	10/19-10/20/01	EMEGX:
			Anal	lysis Time:	01:10					
			MS F	Run #:	1295174					
Copper										
	ND	0.250	0.268	mg/L	107		SW846	6010B	10/19-10/20/01	EMEGX:
	ND	0.250	0.269	mg/L	107	0.18	SW846	6010B	10/19-10/20/01	EMEGX:
			Anal	lysis Time:	01:10					
			MS F	Run #:	1295174					

MATRIX SPIKE SAMPLE DATA REPORT

GC/MS Volatiles

Client Lot #...: E1J180344 Work Order #...: EMET01AH-MS Matrix...... WATER

MS Lot-Sample #: E1J180379-003 EMET01AJ-MSD

Date Sampled...: 10/18/01 12:30 Date Received..: 10/18/01 18:40 MS Run #.....: 1296208

 Prep Date....: 10/23/01
 Analysis Date..: 10/23/01

 Prep Batch #...: 1296396
 Analysis Time..: 05:54

	SAMPLE	SPIKE	MEASRD		PERCENT			
PARAMETER	AMOUNT	AMT	AMOUNT	UNITS	RECOVERY	RPD	METHOL)
Benzene	ND	10.0	9.48	ug/L	95		SW846	8260B
	ND	10.0	9.57	ug/L	96	0.94	SW846	8260B
Chlorobenzene	ND	10.0	9.70	ug/L	97		SW846	8260B
	ND	10.0	9.79	ug/L	98	0.92	SW846	8260B
1,1-Dichloroethene	ND	10.0	8.51	ug/L	85		SW846	8260B
	ND	10.0	8.86	ug/L	89	4.0	SW846	8260B
Toluene	ND	10.0	9.60	ug/L	96		SW846	8260B
	ND	10.0	9.93	ug/L	99	3.4	SW846	8260B
Trichloroethene	ND	10.0	10.1	ug/L	101		SW846	8260B
	ND	10.0	10.2	ug/L	102	0.59	SW846	8260B
			PERCENT		RECOVERY			
SURROGATE			RECOVER	Ϋ́	LIMITS	_		
Bromofluorobenzene			118		(75 - 120))		
			117		(75 - 120))		
1,2-Dichloroethane-d4			115		(65 - 130))		
			111		(65 - 130))		
Toluene-d8			104		(80 - 130))		
			107		(80 - 130))		

NOTE(S):

Calculations are performed before rounding to avoid round-off errors in calculated results.

MATRIX SPIKE SAMPLE EVALUATION REPORT

TOTAL Metals

	PERCENT	RECOVERY	RPD			PREPARATION-	WORK
PARAMETER	RECOVERY	LIMITS RPD	LIMITS	METHOL)	ANALYSIS DATE	ORDER #
MS Lot-Samp	ole #: E1J18	0344-003 Prep B	atch #	.: 1292	194		
Cadmium	101	(80 - 120)		SW846	6010B	10/19-10/20/01	EMEGX1AF
	101	(80 - 120) 0.37	(0-20)	SW846	6010B	10/19-10/20/01	EMEGX1AC
		Analysis Time	e: 01:10				
		MS Run #	: 129517	4			
Chromium	103	(85 - 120)		SW846	6010B	10/19-10/20/01	EMEGX1AF
	102	(85 - 120) 0.72	(0-20)	SW846	6010B	10/19-10/20/01	EMEGX1AI
		Analysis Time	e: 01:10				
		MS Run #	: 129517	4			
Copper	107	(80 - 120)		SW846	6010B	10/19-10/20/01	EMEGX1AN
	107	(80 - 120) 0.18	(0-20)	SW846	6010B	10/19-10/20/01	EMEGX1A1
		Analysis Time	e: 01:10				
		MS Run #		4			

Calculations are performed before rounding to avoid round-off errors in calculated results.

NOTE(S):

MATRIX SPIKE SAMPLE EVALUATION REPORT

GC/MS Volatiles

Client Lot #:	E1J180344	Work Order #:	EMET01AH-MS	Matrix:	WATER
MS Lot-Sample #:	E1J180379-003		EMET01AJ-MSD		
Date Sampled:	10/18/01 12:30	Date Received:	10/18/01 18:40	MS Run #:	1296208
Prep Date:	10/23/01	Analysis Date:	10/23/01		
Prep Batch #:	1296396	Analysis Time:	05:54		

	PERCENT	RECOVERY		RPD	
PARAMETER	RECOVERY	LIMITS	RPD	LIMITS	METHOD
Benzene	95	(75 - 120)			SW846 8260B
	96	(75 - 120)	0.94	(0-25)	SW846 8260B
Chlorobenzene	97	(80 - 120)			SW846 8260B
	98	(80 - 120)	0.92	(0-25)	SW846 8260B
1,1-Dichloroethene	85	(70 - 130)			SW846 8260B
	89	(70 - 130)	4.0	(0-25)	SW846 8260B
Toluene	96	(80 - 120)			SW846 8260B
	99	(80 - 120)	3.4	(0-25)	SW846 8260B
Trichloroethene	101	(75 - 130)			SW846 8260B
	102	(75 - 130)	0.59	(0-25)	SW846 8260B
		PERCENT		RECOVERY	
SURROGATE		RECOVERY		LIMITS	
Bromofluorobenzene		118		(75 - 120	0)
		117		(75 - 120))
1,2-Dichloroethane-d4		115		(65 - 130	0)
		111		(65 - 130))
Toluene-d8		104		(80 - 130))
		107		(80 - 130))

NOTE(S):

Calculations are performed before rounding to avoid round-off errors in calculated results.

SAMPLE DUPLICATE EVALUATION REPORT

General Chemistry

Client Lot #...: E1J180344 Work Order #...: EMEGR-SMP Matrix.....: WATER

EMEGR-DUP

Date Sampled...: 10/18/01 08:30 Date Received..: 10/18/01 15:32

% Moisture....: Dilution Factor: Initial Wgt/Vol:

Analysis Time..: 17:08 MS Run Number..: 1291271

Subcontract Reports

2852 Alton Ave., Irvine, CA 92606 (949) 261-1022 FAX (949) 261-1228 1014 E. Cooley Dr., Suite A, Colton, CA 92324 (909) 370-4667 FAX (909) 370-1046 7277 Hayvenhurst, Suite B-12, Van Nuys, CA 91406 (818) 779-1844 FAX (818) 779-1843 9484 Chesapeake Dr., Suite 805, San Diego, CA 92123 (858) 505-8596 FAX (858) 505-9689 9830 South 51st St., Suite B-120, Phoenix, AZ 85044 (480) 785-0043 FAX (480) 785-0851 2520 E. Sunset Rd. #3, Las Vegas, NV 89120 (702) 798-3620 FAX (702) 798-3621

LABORATORY REPORT

Prepared For: STL Los Angeles

1721 S. Grand Avenue Santa Ana, CA 92705

Attention: Diane Suzuki Project: E1J180344 Sampled: 10/18/01 Received: 10/18/01 Reported: 10/29/01

This laboratory report is confidential and is intended for the sole use of Del Mar Analytical and its client. This entire report was reviewed and approved for release.

CA ELAP Certificate #1197 AZ DHS License #AZ0428

Del Mar Analytical, Irvine

Pat Abe Project Manager

000063

2852 Alton Ave., Irvine, CA 92606 (949) 261-1022 FAX (949) 261-1228 1014 E. Cooley Dr., Suite A, Colton, CA 92324 (909) 370-4667 FAX (909) 370-1046 7277 Hayvenhurst, Suite B-12, Van Nuys, CA 91406 (818) 779-1844 FAX (818) 779-1843 9484 Chesapeake Dr., Suite 805, San Diego, CA 92123 (858) 505-8596 FAX (858) 505-9689 9830 South 51st St., Suite B-120, Phoenix, AZ 85044 (480) 785-0043 FAX (480) 785-0851

STL Los Angeles

Project ID: E1J180344

1721 S. Grand Avenue Santa Ana, CA 92705 Attention: Diane Suzuki

Report Number: IKJ0713

Sampled: 10/18/01 Received: 10/18/01

			INOR	GANICS					
***	Analyte	Method	Batch	Reporting Limit	Sample Result	Dilution Factor	Date Extracted	Date Analyzed	Data Qualifiers
				mg/l	mg/l				
	Sample ID: IKJ0713-01 (PT1-MW4-051 -	Water)							
-	Chromium VI	EPA 7199	I1J1833	1.0	32	500	10/18/01	10/18/01	
	Sample ID: IKJ0713-02 (PT1-MW35-051	- Water)							
	Chromium VI	EPA 7199	I1J1833	1.0	33	500	10/18/01	10/18/01	
ione	Sample ID: IKJ0713-03 (PT1-MW16-051	- Water)							
-	Chromium VI	EPA 7199	I1J1833	0.0020	0.0062	1	10/18/01	10/18/01	
	Sample ID: IKJ0713-04 (PT1-MW09-051	- Water)							
	Chromium VI	EPA 7199	I1J1833	0.050	1.1	25	10/18/01	10/18/01	
-	Sample ID: IKJ0713-05 (PT1-MW37-051	- Water)							
	Chromium VI	EPA 7199	I1J1833	0.050	1.1	25	10/18/01	10/18/01	
	Sample ID: IKJ0713-06 (PT1-MW7-051 -	Water)							
	Chromium VI	EPA 7199	I1J1833	0.0020	ND	1	10/18/01	10/18/01	
	Sample ID: IKJ0713-07 (PT1-MW11-051	- Water)							
	Chromium VI	EPA 7199	IIJ1833	0.0020	ND	1	10/18/01	10/18/01	
	Sample ID: IKJ0713-08 (PT1-EB02-051 -	Water)							
-	Chromium VI	EPA 7199	11J1833	0.0020	ND	1	10/18/01	10/18/01	

Del Mar Analytical, Irvine Pat Abe

000064

Project Manager

2852 Alton Ave., Irvine, CA 92606 (949) 261-1022 FAX (949) 261-1228
1014 E. Cooley Dr., Suite A, Colton, CA 92324 (909) 370-4667 FAX (909) 370-1046
7277 Hayvenhurst, Suite B-12, Van Nuys, CA 91406 (818) 779-1844 FAX (818) 779-1843
9484 Chesapeake Dr., Suite 80-5, San Diego, CA 92123 (858) 505-8596 FAX (858) 505-9689
9830 South 51st St., Suite B-120, Phoenix, AZ 85044 (480) 785-0043 FAX (480) 785-0851
2520 E. Sunset Rd. #3. Las Vegas, NV 89120 (702) 798-3620 FAX (702) 798-3621

STL Los Angeles 1721 S. Grand Avenue

1721 S. Grand Avenue Santa Ana, CA 92705 Attention: Diane Suzuki Project ID: E1J180344

Report Number: IKJ0713

Sampled: 10/18/01 Received: 10/18/01

METHOD BLANK/QC DATA

INORGANICS

'D Data	RPD		%REC		Source	Spike		Reporting			_			
nit Qualifiers	D Limit	RPD	Limits	%REC	Result	Level	Units	Limit	Result	Analyte				
	Batch: I1J1833 Extracted: 10/18/01													
									(I1J1833-BLK1)	Blank Analyzed: 10/18/01				
							mg/l	0.0020	ND	Chromium VI				
									(I1J1833-BS1)	LCS Analyzed: 10/18/01				
			90-110	104		0.0500	mg/l	0.0020	0.0518	Chromium VI				
		Source: IKJ0684-03						Matrix Spike Analyzed: 10/18/01 (I1J1833-MS1)						
			70-130	102	ND	0.0500	mg/l	0.0020	0.0514	Chromium VI				
			-03	IKJ0684	Source:			Matrix Spike Dup Analyzed: 10/18/01 (I1J1833-MSD1)						
	78 15	0.978	70-130	101	ND	0.0500	mg/l	0.0020	0.0509	Chromium VI				
•	78 15	0.978	-03 70-130 -03	IKJ0684 102 IKJ0684	ND Source:	0.0500	mg/l	(S1) 0.0020 33-MSD1)	0.0518 0/18/01 (I1J1833-M 0.0514 ed: 10/18/01 (I1J18	Chromium VI Matrix Spike Analyzed: 1 Chromium VI Matrix Spike Dup Analyz	-			

Del Mar Analytical, Irvine Pat Abe

Project Manager

000065

2852 Alton Ave., Irvine, CA 92606 (949) 261-1022 FAX (949) 261-1228 (1014 E. Cooley Dr., Suite A, Colton, CA 92324 (909) 370-4667 FAX (909) 370-1046 (7277 Hayvenhurst, Suite B-12, Van Nuys, CA 91406 (818) 779-1844 FAX (818) 779-1843 9484 Chesapeake Dr., Suite 805, San Diego, CA 92123 (858) 505-8569 FAX (858) 505-9689 674X (858) 505-9689 674X (858) 505-9689 (858) 505-8569 (858) 5

STL Los Angeles

Project ID: E1J180344

1721 S. Grand Avenue Santa Ana, CA 92705 Attention: Diane Suzuki

Report Number: IKJ0713

Sampled: 10/18/01 Received: 10/18/01

DATA QUALIFIERS AND DEFINITIONS

Analyte NOT DETECTED at or above the reporting limit or MDL, if MDL is specified. ND

NR Not reported.

RPD Relative Percent Difference

Del Mar Analytical, Irvine Pat Abe

000066

Project Manager

STL Los Angeles

1721 South Grand Avenue Santa Ana, CA 92705-4808

Tel: 714 258 8610 Fax: 714 258 0921 www.stl-inc.com

October 23, 2001

STL LOT NUMBER: E1J160281

NELAP Certification Number: 01118CA PO/CONTRACT: 2279-11462-111.FLD

Sharon Wallin Camp, Dresser, McKee 18881 Von Karman, Suite 650 Irvine, CA 92612

Dear Ms. Wallin.

This report contains the analytical results for the three samples received under chain of custody by STL Los Angeles on October 16, 2001. These samples are associated with your PTI - Santa Fe Springs project.

All applicable quality control procedures met method-specified acceptance criteria except as noted on the following page. See Project Receipt Checklist for container temperature and conditions. Temperature reading between 2 to 6 degrees Celsius is considered within acceptable criteria. Any matrix related anomaly is footnoted within the report. The Hexavalent Chromium by 7199 analysis was performed by Del Mar Analytical. See attached report for any related anomaly.

STL Los Angeles certifies that the tests performed at our facility meet all NELAP requirements for parameters for which accreditation is required or available. The case narrative is an integral part of the report. This report shall not be reproduced except in full, without the written approval of the laboratory.

If you have any questions, please feel free to call me at (714) 258-8610 extension 309.

Sincerely,

Diane Suzuki Project Manager CC: Project File

Page 1 of **000000** total pages in this report.

000001

LOT NUMBER E1J160281

Nonconformance 07-16600

Affected Samples:

E1J160281 (1): MW1S-101601

Affected Methods:

8270C SIM, 1,4 Dioxane

Case Narrative:

Due to insufficient volume for MS/MSD, a LCS/DCS was prepared to measure accuracy of the batch.

	RECEIPT CH				10			
Quantims Lo	ot #: 🚜	716029 DM	81	Quote	#:	9756		
Client Name	: 2	DM		– Project	: Philoso	Tech 1: 10/16/		
Received by	:	milla		 Date/Ti	me Received	1: 10/16/	01 1	6
				 ∃Ex □DHL	□ln-	House Courie	r Rev	
	UPS	M DES	Oth					
••••		(Z) = -	**********		······	• • • • • • • • • • • • • • • • • • • •		* *
							Initial	/
Custody So	ol Status: A	Intact \square	Broken	None			AD (1
Custody Sea	ai Status. 📝	Attitact [ыокен		M/1-	C! #	XID	4
Custody Sea	ai #(S):	TOTAL A	lo:		IXINO	Seal #	···· - }	
Sample Con	tainer(s): _	JSTL-LA [_]	Client	□N/A		6	ö; — †	
Temperature	e(s) (COOLER	/BLANK) in °C:	27	□N/A	(CORRECTE	D TEMP)		
Thermomete	er Used : 🔀	R (Intra-red)	<u> </u>	ital (Probe)		• • • • • • • • • • • • • • • • • • • •		
Samples:	<u>[</u>	Intact	' <u></u> Bro	kenOthe	er			
Anomalies:	<i>f</i> ∞ ⊠	No	Yes	s (See Clouseau)			
Labeled by .	MX.							
Labeling che	cked by			******				
**********			_	BHR □RUSH-		* * * * * * * * * * * * * * * * * * * *	```	* *
-		719	9 to	Del Har		•••••		
- - -		719	9 te	Del Har				
-				DEL HAR				
Fraction	/			Del Har				T
	/	2		Del Har				
VOAh /*	3			Del Har				
VOAh /*	3	2		Del Har				
VOAh /* 12TW PB 250ML PB	3	2		Del Har				
VOAh /* 12FW PB 250ML PB BOUL PBM	3	2		Del Har				
VOAh /* 12TW PB 250ML PB	3	2		Del Har				
VOAh /* 12FW PB 250ML PB BOUL PBM	3	2		Del Har				
VOAh /* 12FW PB 2FOMI PB BOUL PBM	3	2		Del Har				
VOAh /* 12FW PB 250ML PB BOUL PBM	3	2		Del Har				
VOAh /* 12FW PB 2FOMI PB BOULPBM	3	2		Del Har				
VOAh /* 12Fed PB 2Fome PB Boul PBM	3	2		Del Har				
VOAh /* 12Fed PB 2Fome PB Boul PBM	3	2		Del Har				
VOAh /* 12FW PB 2FOMI PB BOULPBM	3	2		Del Har				
VOAh /* 12 Fed PB 25 Devel PBm 1 LAGB	3	2	* LEAVE NO B	Del Har				
VOAh /* 12Fed PB 25Ome PB BOUL PBM ILAGB	a:Sodium Hydoxide	Zana:Zinc Acetate/Sor	* LEAVE NO B	LANK SPACES ; USE	N/A	n/f/l:HNO3-Lab fil	ltered	
VOAh /* 12Fed PB 25Ome PB BOAL PBA	3 / / / / na:Sodium	Zana:Zinc Acetate/Sor	* LEAVE NO B	LANK SPACES ; USE	N/A			
NOAh /* 12 Ful PB 25 Duch PB 1 LA G.B h:HC1 CGJ:Clear Glass Jar	a:Sodium Hydoxide CGB:Clear Gla Bottle	Zana:Zinc Acetate/So- Hydroxide ss AGJ:Amber	dium s: H2S	LANK SPACES ; USE	N/A	n/f/l:HNO3-Lab fil	ltered	

Analytical Report

${\bf EXECUTIVE\ SUMMARY\ -\ Detection\ Highlights}$

E1J160281

		REPORTIN	G	ANALYTICAL
PARAMETER	RESULT	LIMIT	UNITS	METHOD
MW1S-101601 10/16/01 13:15 001				
1,4-Dioxane	140 Q	9.5	ug/L	SW846 8270C SIM
1,1-Dichloroethane	1.9	1.0	ug/L	SW846 8260B
1,2-Dichloroethane	1.1	1.0	ug/L	SW846 8260B
cis-1,2-Dichloroethene	6.7	1.0	ug/L	SW846 8260B
Trichloroethene	13	1.0	ug/L	SW846 8260B
рН	6.8	0.10	No Units	SW846 9040B
MW1D-101601 10/16/01 14:30 002				
Benzene	1.5	1.0	ug/L	SW846 8260B
Tetrachloroethene	5.3	1.0	ug/L	SW846 8260B
Trichloroethene	3.5	1.0	ug/L	SW846 8260B
m-Xylene & p-Xylene	1.5	1.0	ug/L	SW846 8260B
рН	7.4	0.10	No Units	SW846 9040B
	MW1S-101601 10/16/01 13:15 001 1,4-Dioxane 1,1-Dichloroethane 1,2-Dichloroethane cis-1,2-Dichloroethene Trichloroethene pH MW1D-101601 10/16/01 14:30 002 Benzene Tetrachloroethene Trichloroethene m-Xylene & p-Xylene	MW1S-101601 10/16/01 13:15 001 1,4-Dioxane 140 Q 1,1-Dichloroethane 1.9 1,2-Dichloroethane 1.1 cis-1,2-Dichloroethene 6.7 Trichloroethene 13 pH 6.8 MW1D-101601 10/16/01 14:30 002 Benzene 1.5 Tetrachloroethene 5.3 Trichloroethene 3.5 m-Xylene & p-Xylene 1.5	### PARAMETER RESULT LIMIT ##################################	MW1S-101601 10/16/01 13:15 001 1,4-Dioxane

METHODS SUMMARY

E1J160281

PARAMETER	ANALYTICAL METHOD	PREPARATION METHOD
pH Aqueous	SW846 9040B	SW846 9040B
Inductively Coupled Plasma (ICP) Metals	SW846 6010B	SW846 3005A
Volatile Organics by GC/MS	SW846 8260B	SW846 5030B/826
8270C (SIM)	SW846 8270C SIM	

References:

SW846 "Test Methods for Evaluating Solid Waste, Physical/Chemical Methods", Third Edition, November 1986 and its updates.

SAMPLE SUMMARY

E1J160281

•	<u>WO #</u>	SAMPLE#	CLIENT SAMPLE ID		SAMP TIME
•	EL8T5 EL8VG EL8VT	002	MW1S-101601 MW1D-101601 TRIP BLANK	10/16/01 10/16/01 10/16/01	

NOTE(S):

- The analytical results of the samples listed above are presented on the following pages.
- All calculations are performed before rounding to avoid round-off errors in calculated results.
- Results noted as "ND" were not detected at or above the stated limit.
- This report must not be reproduced, except in full, without the written approval of the laboratory.
- Results for the following parameters are never reported on a dry weight basis: color, corrosivity, density, flashpoint, ignitability, layers, odor, paint filter test, pH, porosity pressure, reactivity, redox potential, specific gravity, spot tests, solids, solubility, temperature, viscosity, and weight.

Client Sample ID: MW1S-101601

GC/MS Semivolatiles

Lot-Sample #:	E1J160281-001	Work Order #:	EL8T51AG	Matrix	:	WATER
Date Sampled:	10/16/01 13:15	Date Received:	10/16/01 10	5:10 MS Run	#:	
Prep Date:	10/19/01	Analysis Date:	10/23/01			
Prep Batch #:	1292556	Analysis Time:	13:38			
		Method:	SW846 8270	C SIM		
			REPORTING			
PARAMETER		RESULT	LIMIT	UNITS	MDL	
1,4-Dioxane		140 Q	9.5	ug/L	3.1	
		PERCENT	RECOVERY			
SURROGATE		RECOVERY	LIMITS			
0 51		0.0 NC, SRD	(30 - 120)			
2-Fluorophenol						

NC The recovery and/or RPD were not calculated.

SRD The surrogate recovery was not calculated because the extract was diluted beyond the ability to quantitate a recovery.

Q Elevated reporting limit. The reporting limit is elevated due to high analyte levels.

Client Sample ID: MW1S-101601

GC/MS Volatiles

Lot-Sample #: E1J160281-00 Date Sampled: 10/16/01 13 Prep Date: 10/17/01 Prep Batch #: 1290570		: 10/16/01 : 10/17/01 : 19:39	16:10 MS R	ix: WA: un #: 129
PARAMETER	RESULT	REPORTING LIMIT	UNITS	MDL
Benzene	ND	1.0	ug/L	0.30
Bromodichloromethane	ND	1.0	ug/L ug/L	0.30
Bromoform	ND	1.0	ug/L	0.30
Bromomethane	ND	2.0	ug/L	1.0
Carbon tetrachloride	ND	1.0	ug/L	0.30
Chlorobenzene	ND	1.0	ug/L	0.30
Dibromochloromethane	ND	1.0	ug/L	0.40
Chloroethane	ND	2.0	ug/L	0.30
Chloroform	ND	1.0	ug/L	0.30
Chloromethane	ND	2.0	ug/L	0.30
1,2-Dichlorobenzene	ND	1.0	ug/L	0.30
1,3-Dichlorobenzene	ND	1.0	ug/L	0.30
1,4-Dichlorobenzene	ND	1.0	ug/L	0.30
1,1-Dichloroethane	1.9	1.0	ug/L	0.20
1,2-Dichloroethane	1.1	1.0	ug/L	0.40
1,1-Dichloroethene	ND	1.0	ug/L	0.30
cis-1,2-Dichloroethene	6.7	1.0	ug/L	0.30
trans-1,2-Dichloroethene	ND	1.0	ug/L	0.30
1,2-Dichloropropane	ND	1.0	ug/L	0.30
cis-1,3-Dichloropropene	ND	1.0	ug/L	0.30
trans-1,3-Dichloropropene	ND	1.0	ug/L	0.50
Ethylbenzene	ND	1.0	ug/L	0.20
Methylene chloride	ND	1.0	ug/L	0.30
1,1,2,2-Tetrachloroethane	ND	1.0	${\tt ug/L}$	0.40
Tetrachloroethene	ND	1.0	ug/L	0.30
Toluene	ND	1.0	ug/L	0.30
1,1,1-Trichloroethane	ND	1.0	ug/L	0.20
1,1,2-Trichloroethane	ND	1.0	ug/L	0.30
Trichloroethene	13	1.0	ug/L	0.30
Trichlorofluoromethane	ND	2.0	ug/L	0.30
Vinyl chloride	ND	2.0	ug/L	0.30
m-Xylene & p-Xylene	ND	1.0	ug/L	0.50
o-Xylene	ND	1.0	ug/L	0.20
GIRDOGARIE	PERCENT	RECOVERY		
SURROGATE	RECOVERY	LIMITS	<u>, , , , , , , , , , , , , , , , , , , </u>	
Bromofluorobenzene	103	(75 - 120		
1,2-Dichloroethane-d4	104	(65 - 130		
Toluene-d8	98	(80 - 130)	

Client Sample ID: MW1D-101601

GC/MS Volatiles

Prep Batch #: 10/17/01 Prep Batch #: 1290570	Analysis Date. Analysis Time. Method	: 20:09		
		REPORTI	1G	
PARAMETER	RESULT	LIMIT	UNITS	MDL
Benzene	1.5	1.0	ug/L	0.30
Bromodichloromethane	ND	1.0	ug/L	0.30
Bromoform	ND	1.0	ug/L	0.30
Bromomethane	ND	2.0	ug/L	1.0
Carbon tetrachloride	ND	1.0	ug/L	0.30
Chlorobenzene	ND	1.0	ug/L	0.30
Dibromochloromethane	ND	1.0	ug/L	0.40
Chloroethane	ND	2.0	ug/L	0.30
Chloroform	ND	1.0	ug/L	0.30
Chloromethane	ND	2.0	ug/L	0.30
1,2-Dichlorobenzene	ND	1.0	ug/L	0.30
1,3-Dichlorobenzene	ND	1.0	ug/L	0.30
1,4-Dichlorobenzene	ND	1.0	ug/L	0.30
1,1-Dichloroethane	ND	1.0	ug/L	0.20
1,2-Dichloroethane	ND	1.0	ug/L	0.40
1,1-Dichloroethene	ND	1.0	ug/L	0.30
cis-1,2-Dichloroethene	ND	1.0	ug/L	0.30
trans-1,2-Dichloroethene	ND	1.0	ug/L	0.30
1,2-Dichloropropane	ND	1.0	ug/L	0.30
cis-1,3-Dichloropropene	ND	1.0	ug/L	0.30
trans-1,3-Dichloropropene	ND	1.0	ug/L	0.50
Ethylbenzene	ND	1.0	ug/L	0.20
Methylene chloride	ND	1.0	ug/L	0.30
1,1,2,2-Tetrachloroethane	ND	1.0	ug/L	0.40
Tetrachloroethene	5.3	1.0	ug/L	0.30
Toluene	ND	1.0	ug/L	0.30
1,1,1-Trichloroethane	ND	1.0	\mathtt{ug}/\mathtt{L}	0.20
1,1,2-Trichloroethane	ND	1.0	ug/L	0.30
Trichloroethene	3.5	1.0	ug/L	0.30
Trichlorofluoromethane	ND	2.0	ug/L	0.30
Vinyl chloride	ND	2.0	ug/L	0.30
m-Xylene & p-Xylene	1.5	1.0	ug/L	0.50
o-Xylene	ND	1.0	ug/L	0.20
	PERCENT	RECOVERY	ď	
SURROGATE	RECOVERY	LIMITS		
Bromofluorobenzene	96	(75 - 12	20)	

99 92

1,2-Dichloroethane-d4

Toluene-d8

(65 - 130)

(80 - 130)

Client Sample ID: TRIP BLANK

GC/MS Volatiles

Lot-Sample #: E1J160281-00 Date Sampled: 10/16/01 Prep Date: 10/17/01 Prep Batch #: 1290570		1: 10/16/01 : 10/17/01 : 18:08	16:10 MS F	cix: W.Run #: 1
		REPORTIN		
PARAMETER	RESULT	LIMIT	UNITS	MDL
Benzene	ND ND	1.0	ug/L	0.30
Bromodichloromethane	ND	1.0	ug/L	0.30
Bromoform	ND	1.0	ug/L	0.30
Bromomethane	ND	2.0	ug/L	1.0
Carbon tetrachloride	ND	1.0	ug/L	0.30
Chlorobenzene	ND	1.0	ug/L	0.30
Dibromochloromethane	ND	1.0	ug/L	0.40
Chloroethane	ND	2.0	ug/L	0.30
Chloroform	ND	1.0	ug/L	0.30
Chloromethane	ND	2.0	ug/L	0.30
1,2-Dichlorobenzene	ND	1.0	ug/L	0.30
1,3-Dichlorobenzene	ND	1.0	ug/L	0.30
1,4-Dichlorobenzene	ND	1.0	ug/L	0.30
1,1-Dichloroethane	ND	1.0	ug/L	0.20
1,2-Dichloroethane	ND	1.0	ug/L	0.40
1,1-Dichloroethene	ND	1.0	ug/L	0.30
cis-1,2-Dichloroethene	ND	1.0	ug/L	0.30
trans-1,2-Dichloroethene	ND	1.0	ug/L	0.30
1,2-Dichloropropane	ND	1.0	ug/L	0.30
cis-1,3-Dichloropropene	ND	1.0	ug/L	0.30
trans-1,3-Dichloropropene	ND	1.0	ug/L	0.50
Ethylbenzene	ND	1.0	ug/L	0.20
Methylene chloride	ND	1.0	ug/L	0.30
1,1,2,2-Tetrachloroethane	ND	1.0	ug/L	0.40
Tetrachloroethene	ND	1.0	ug/L	0.30
Toluene	ND	1.0	ug/L	0.30
1,1,1-Trichloroethane	ND	1.0	ug/L	0.20
1,1,2-Trichloroethane	ND	1.0	ug/L	0.30
Trichloroethene	ND	1.0	ug/L	0.30
Trichlorofluoromethane	ND	2.0	ug/L	0.30
Vinyl chloride	ND	2.0	ug/L	0.30
m-Xylene & p-Xylene	ND	1.0	ug/L	0.50
o-Xylene	ND	1.0	ug/L	0.20
	PERCENT	RECOVERY	7	
SURROGATE	RECOVERY	LIMITS		
Bromofluorobenzene	94	(75 - 12	(0)	
			- 1	

(65 - 130) (80 - 130)

95

1,2-Dichloroethane-d4

Toluene-d8

Client Sample ID: MW1S-101601

General Chemistry

•	Lot-Sample #:	E1J160281-001	Work Order #:	EL8T5	Matrix: WATER
	Date Campled .	10/16/01 13:15	Date Pecaimed .	10/16/01 16:10	

Date Sampled...: 10/16/01 13:15 Date Received..: 10/16/01 16:10

	An	alysis Time	17:06	MS Run #:	1289263 MDL		. :
рН	6.8	0.10	No Units	SW846 9040B	10/16/	01	1289558
PARAMETER	RESULT	RL	UNITS	METHOD	ANALYS	IS DATE	BATCH #
					PREPAR.	ATION-	PREP

Client Sample ID: MW1D-101601

General Chemistry

•	Lot-Sample #:	E1J160281-002	Work Order #:	EL8VG	Matrix:	WATER
	Date Sampled:	10/16/01 14:30	Date Received:	10/16/01 16:10		

					PRE	PARALION-	PKEP
PARAMETER	RESULT	RL	UNITS	METHOD	ANA	LYSIS DATE	BATCH #
рН	7.4	0.10	No Units	SW846 9040B	10/	16/01	1289558
	Ana	lvsis Time.	. 17.12	MS Run # . 1	289263 M	IDI.	

Client Sample ID: MW1S-101601

TOTAL Metals

Lot-Sample #...: E1J160281-001 Matrix....: WATER

Date Sampled...: 10/16/01 13:15 Date Received..: 10/16/01 16:10

PARAMETER	RESULT	REPORTING LIMIT UNITS	METHOD	PREPARATION- WORK ANALYSIS DATE ORDER #
Prep Batch #.	: 1290238			
Cadmium	ND	0.0050 mg/L	SW846 6010B	10/17-10/18/01 EL8T51AC
		Analysis Time: 16:27	MS Run #: 1290	110 MDL 0.00060
Chromium	ND	0.010 mg/L	SW846 6010B	10/17-10/18/01 EL8T51AD
		Analysis Time: 16:27	MS Run #: 1290	110 MDL 0.0010
Copper	ND	0.025 mg/L	SW846 6010B	10/17-10/18/01 EL8T51AE
• •		Analysis Time: 16:27	MS Run #: 1290	110 MDL 0.0040

Client Sample ID: MW1D-101601

TOTAL Metals

Matrix....: WATER

Lot-Sample #...: E1J160281-002

Date Sampled...: 10/16/01 14:30 Date Received..: 10/16/01 16:10

PARAMETER	RESULT	REPORTING LIMIT UNITS	METHOD	PREPARATION- WORK ANALYSIS DATE ORDER #
Prep Batch #.	: 1290238			
Cadmium	ND	0.0050 mg/L	SW846 6010B	10/17-10/18/01 EL8VG1AC
		Analysis Time: 17:17	MS Run #: 1290	110 MDL 0.00060
Chromium	ND	0.010 mg/L	SW846 6010B	10/17-10/18/01 EL8VG1AD
		Analysis Time: 17:17	MS Run #: 1290	110 MDL 0.0010
Copper	ND	0.025 mg/L	SW846 6010B	10/17-10/18/01 EL8VG1AE
		Analysis Time: 17:17	MS Run #: 1290	110 MDL 0.0040

QA/QC

000017

QC DATA ASSOCIATION SUMMARY

E1J160281

Sample Preparation and Analysis Control Numbers

SAMPLE#	MATRIX	METHOD	BATCH #	BATCH #	MS RUN#
001	WATER	SW846 8270C SIM		1292556	
	WATER	SW846 9040B		1289558	1289263
	WATER	SW846 8260B		1290570	1290165
	WATER	SW846 6010B		1290238	1290110
002	WATER	SW846 9040B		1289558	1289263
	WATER	SW846 8260B		1290570	1290165
	WATER	SW846 6010B		1290238	1290110
003	WATER	SW846 8260B		1290570	1290165

METHOD BLANK REPORT

GC/MS Volatiles

Client Lot #...: E1J160281 Work Order #...: EMA5G1AA Matrix..... WATER

MB Lot-Sample #: E1J170000-570

Prep Date.....: 10/17/01 Analysis Time..: 10:38

Analysis Date..: 10/17/01 **Prep Batch #...:** 1290570

		REPORTI		WE THE SE
PARAMETER	RESULT	LIMIT	UNITS	METHOD
Benzene	ND	1.0	ug/L	SW846 8260B
Bromodichloromethane	ND	1.0	ug/L	SW846 8260B
Bromoform	ND	1.0	ug/L	SW846 8260B
Bromomethane	ND	2.0	ug/L	SW846 8260B
Carbon tetrachloride	ND	1.0	ug/L	SW846 8260B
Chlorobenzene	ND	1.0	ug/L	SW846 8260B
Dibromochloromethane	ND	1.0	ug/L	SW846 8260B
Chloroethane	ND	2.0	ug/L	SW846 8260B
Chloroform	ND	1.0	ug/L	SW846 8260B
Chloromethane	ND	2.0	ug/L	SW846 8260B
1,2-Dichlorobenzene	ND	1.0	ug/L	SW846 8260B
1,3-Dichlorobenzene	ND	1.0	ug/L	SW846 8260B
1,4-Dichlorobenzene	ND	1.0	ug/L	SW846 8260B
1,1-Dichloroethane	ND	1.0	ug/L	SW846 8260B
1,2-Dichloroethane	ND	1.0	ug/L	SW846 8260B
1,1-Dichloroethene	ND	1.0	ug/L	SW846 8260B
cis-1,2-Dichloroethene	ND	1.0	ug/L	SW846 8260B
trans-1,2-Dichloroethene	ND	1.0	ug/L	SW846 8260B
1,2-Dichloropropane	ND	1.0	ug/L	SW846 8260B
cis-1,3-Dichloropropene	ND	1.0	ug/L	SW846 8260B
trans-1,3-Dichloropropene	ND	1.0	ug/L	SW846 8260B
Ethylbenzene	ND	1.0	ug/L	SW846 8260B
Methylene chloride	ND	1.0	ug/L	SW846 8260B
1,1,2,2-Tetrachloroethane	ND	1.0	ug/L	SW846 8260B
Tetrachloroethene	ND	1.0	ug/L	SW846 8260B
Toluene	ND	1.0	ug/L	SW846 8260B
1,1,1-Trichloroethane	ND	1.0	ug/L	SW846 8260B
1,1,2-Trichloroethane	ND	1.0	ug/L	SW846 8260B
Trichloroethene	ND	1.0	ug/L	SW846 8260B
Trichlorofluoromethane	ND	2.0	ug/L	SW846 8260B
Vinyl chloride	ND	2.0	ug/L	SW846 8260B
m-Xylene & p-Xylene	ND	1.0	ug/L	SW846 8260B
o-Xylene	ND	1.0	ug/L	SW846 8260B
		DEGO		
CUIT DO GA TIT	PERCENT	RECOVER'	Y	
SURROGATE	RECOVERY	LIMITS	201	
Bromofluorobenzene	95	(75 - 1		
1,2-Dichloroethane-d4	92	(65 - 1		
Toluene-d8	93	(80 - 1	30)	

NOTE(S):

METHOD BLANK REPORT

GC/MS Semivolatiles

Work Order #...: EMG681AA **Client Lot #...:** E1J160281 Matrix....: WATER

MB Lot-Sample #: G1J190000-556

Prep Date....: 10/19/01 Analysis Time..: 18:25

Analysis Date..: 10/22/01 **Prep Batch #...:** 1292556

REPORTING

PARAMETER RESULT LIMIT UNITS METHOD 1,4-Dioxane ug/LSW846 8270C SIM ND1.0

PERCENT RECOVERY SURROGATE RECOVERY LIMITS 2-Fluorophenol 78 (30 - 120)

Nitrobenzene-d5 86 (30 - 120)

NOTE(S):

METHOD BLANK REPORT

TOTAL Metals

Client Lot #...: E1J160281 Matrix.....: WATER

PARAMETER	RESULT	REPORTING LIMIT	G UNITS	METHOD	PREPARATION- ANALYSIS DATE	WORK ORDER #
MB Lot-Samp	le #: E1J17000	00-238 Prep B	atch #:	1290238		
Cadmium	ND	0.0050	mg/L	SW846 6010B	10/17-10/18/01	EL9DA1AA
		Analysis Time	:: 16:10			
Chromium	ND	0.010	mg/L	SW846 6010B	10/17-10/18/01	EL9DA1AC
		Analysis Time	:: 16:10			
Copper	ND	0.025	mg/L	SW846 6010B	10/17-10/18/01	EL9DA1AD
		Analysis Time	: 16:10		, , ,	

GC/MS Semivolatiles

Client Lot	#: E1J160281	Work Order #	: EMG681AC-LCS	Matrix:	WATER
------------	--------------	--------------	----------------	---------	-------

LCS Lot-Sample#: G1J190000-556

EMG681AD-LCSD

Prep Date....: 10/19/01
Prep Batch #...: 1292556

Analysis Date..: 10/22/01

Analysis Time..: 18:46

PARAMETER 1,4-Dioxane	SPIKE AMOUNT 10.0	MEASURED AMOUNT 4.32	UNITS ug/L	PERCENT RECOVERY 43	RPD	METHOD SW846 8270C SIM
1,1 21011110	10.0	4.57	ug/L	46	5.6	SW846 8270C SIM
			PERCENT	RECOVERY		
SURROGATE			RECOVERY	LIMITS		
2-Fluorophenol			77	(30 - 120)	
			75	(30 - 120)	
Nitrobenzene-d5			84	(30 - 120)	
			88	(30 - 120)	

NOTE(S).

Calculations are performed before rounding to avoid round-off errors in calculated results.

GC/MS Semivolatiles

Client Lot #: E1J160281	Work Order #: EMG681AC-LCS	Matrix: WATER
-------------------------	----------------------------	---------------

LCS Lot-Sample#: G1J190000-556 EMG681AD-LCSD

 Prep Date.....: 10/19/01
 Analysis Date..: 10/22/01

 Prep Batch #...: 1292556
 Analysis Time..: 18:46

	PERCENT	RECOVERY	RPD	
PARAMETER	RECOVERY	LIMITS RPD	LIMITS	METHOD
1,4-Dioxane	43	(30 - 120)		SW846 8270C SIM
	46	(30 - 120) 5.6	(0-35)	SW846 8270C SIM

SURROGATE 2-Fluorophenol	PERCENT RECOVERY 77	RECOVERY LIMITS (30 - 120)
•	75	(30 - 120)
Nitrobenzene-d5	84	(30 - 120)
	88	(30 - 120)

NOTE(S):

Calculations are performed before rounding to avoid round-off errors in calculated results.

GC/MS Volatiles

Client Lot #...: E1J160281 Work Order #...: EMA5G1AC Matrix.....: WATER

LCS Lot-Sample#: E1J170000-570

 Prep Date.....: 10/17/01
 Analysis Date..: 10/17/01

 Prep Batch #...: 1290570
 Analysis Time..: 10:08

	SPIKE	MEASURED		PERCENT	
PARAMETER	MOUNT	AMOUNT	UNITS	RECOVERY	METHOD
Benzene	10.0	9.55	ug/L	96	SW846 8260B
Chlorobenzene	10.0	9.44	ug/L	94	SW846 8260B
1,1-Dichloroethene	10.0	9.07	ug/L	91	SW846 8260B
Toluene	10.0	9.29	ug/L	93	SW846 8260B
Trichloroethene	10.0	9.68	uq/L	97	SW846 8260B

	PERCENT	RECOVERY
SURROGATE	RECOVERY	LIMITS
Bromofluorobenzene	91	(75 - 120)
1,2-Dichloroethane-d4	89	(65 - 130)
Toluene-d8	90	(80 - 130)

NOTE(S):

Calculations are performed before rounding to avoid round-off errors in calculated results.

General Chemistry

Client Lot #: E1J160281	Matrix: WATER
-------------------------	---------------

	SPIKE	MEASURI	ED	PERCNT		PF	EPARATION-	PREP
PARAMETER	AMOUNT_	AMOUNT	UNITS	RECVRY	METHOD	A1	ALYSIS DATE	BATCH #
pН			Work Order	#: EL8V9	1AA LCS	Lot-Sample#:	E1J160000-5	58
	9.18	9.21	No Units	100	SW846 9	040B	10/16/01	1289558
			Analysis Time	. 17.03				

Analysis Time..: 17:03

NOTE(S):

TOTAL Metals

	SPIKE	MEASURE	:D	PERCNT			PREPARATION-	WORK
PARAMETER	TNUOMA	TRUUMA	UNITS	RECVRY	METHOD		ANALYSIS DATE	ORDER :
LCS Lot-Sam	mple#: E1J	170000-2	38 Prep I	Batch #	: 12902	38		
Cadmium	0.0500	0.0541	mg/L	108	SW846	6010B	10/17-10/18/01	EL9DA1
			Analysis Tim	ne: 16:18				
Chromium	0.200	0.227	mg/L	113	SW846	6010B	10/17-10/18/01	EL9DA1
			Analysis Tim	ne: 16:18				
Copper	0.250	0.268	mg/L	107	SW846	6010B	10/17-10/18/01	EL9DA1
			Analysis Tim	ne: 16:18				

GC/MS Volatiles

Client Lot #...: E1J160281 Work Order #...: EMA5G1AC Matrix.....: WATER

LCS Lot-Sample#: E1J170000-570

 Prep Date.....: 10/17/01
 Analysis Date..: 10/17/01

 Prep Batch #...: 1290570
 Analysis Time..: 10:08

	PERCENT	RECOVERY
SURROGATE	RECOVERY	LIMITS
Bromofluorobenzene	91	(75 - 120)
1,2-Dichloroethane-d4	89	(65 - 130)
Toluene-d8	90	(80 - 130)

NOTE(S):

Calculations are performed before rounding to avoid round-off errors in calculated results.

General Chemistry

Client Lot #...: E1J160281 Matri:

Matrix....: WATER

 PERCENT
 RECOVERY
 PREPARATION - PREP

 PARAMETER
 RECOVERY
 LIMITS
 METHOD
 ANALYSIS DATE
 BATCH #

 pH
 Work Order #: EL8V91AA
 LCS Lot-Sample#: E1J160000-558

 100
 (90 - 110)
 SW846 9040B
 10/16/01
 1289558

Analysis Time..: 17:03

NOTE(S):

TOTAL Metals

Client Lot #	.: E1J160281		Matrix: WATER
PARAMETER	PERCENT RECOVERY	RECOVERY LIMITS METHOD	PREPARATION- ANALYSIS DATE WORK ORDER #
LCS Lot-Sample: Cadmium	#: E1J170000 108	-238 Prep Batch #: 1290238 (80 - 120) SW846 6010B Analysis Time: 16:18	10/17-10/18/01 EL9DA1AE
Chromium	113	(85 - 120) SW846 6010B Analysis Time: 16:18	10/17-10/18/01 EL9DA1AF
Copper	107	(80 - 120) SW846 6010B Analysis Time: 16:18	10/17-10/18/01 EL9DA1AG
NOTE(S):			

MATRIX SPIKE SAMPLE DATA REPORT

GC/MS Volatiles

<pre>Date Sampled: 10/15/ Prep Date: 10/16/ Prep Batch #: 129032</pre>	01	Analys	sis Date.	.: 10/15/6 .: 10/17/6 .: 05:52		Run	#	.: 129
	SAMP	LE SPIKE	MEASRD		PERCENT			
PARAMETER	AMOU	TMA TM	AMOUNT	UNITS	RECOVERY	RPD	METHOD)
Benzene	ND	10.0	12.4	ug/L	124		SW846	8260B
	(Qualifie	rs: a,MS	C				
	ND	10.0	12.1	ug/L	121	2.4	SW846	8260B
	(Qualifie	rs: a,MS	C				
Chlorobenzene	ND	10.0	12.2	ug/L	122		SW846	8260B
	(Qualifie	rs: a,MS	C				
	ND	10.0	12.0	ug/L	120	1.6	SW846	8260B
1,1-Dichloroethene	ND	10.0	11.7	ug/L	117		SW846	8260B
	ND	10.0	11.8	ug/L	118	0.85	SW846	8260B
Toluene	ND	10.0	11.6	ug/L	116		SW846	8260B
	ND		11.6	ug/L	116	0.17	SW846	8260B
Trichloroethene	ND		12.8	ug/L	128		SW846	8260B
	ND	10.0	12.7	ug/L	127	0.70	SW846	8260B
			PERCENT	1	RECOVERY			
SURROGATE			RECOVER	Y	LIMITS			
Bromofluorobenzene	_		114	_	(75 - 120	0)		
			110		(75 - 120))		
1,2-Dichloroethane-d4			113		(65 - 130)		
			105		(65 - 130)		
Toluene-d8			112		(80 - 130))		
			108		(80 - 130))		

NOTE(S):

Calculations are performed before rounding to avoid round-off errors in calculated results.

Bold print denotes control parameters

MSC The percent recovery of this analyte in the associated laboratory control sample is within control limits.

a Spiked analyte recovery is outside stated control limits.

MATRIX SPIKE SAMPLE DATA REPORT

TOTAL Metals

	SAMPLE	SPIKE	MEASURED		PERCNT	ı			PREPARATION-	WORI
PARAMETER	AMOUNT	AMT	AMOUNT	UNITS	RECVRY	RPD	METHOI)	ANALYSIS DATE	ORDI
MS Lot-Sai	mple #:	E1J16	0281-001	Prep Batch	#: 1	29023	В			
Cadmium										
	ND	0.050	0.0520	mg/L	101		SW846	6010B	10/17-10/18/01	EL87
	ND	0.050	0.0542	mg/L	106	4.3	SW846	6010B	10/17-10/18/01	EL87
			Anal	ysis Time: 16	5:56					
			MS R	un #: 12	290110					
Chromium										
	ND	0.200	0.218	mg/L	106		SW846	6010B	10/17-10/18/01	EL81
	ND	0.200	0.226	mg/L	110	3.7	SW846	6010B	10/17-10/18/01	EL87
			Anal	ysis Time: 16	5:56					
				un #: 12						
Copper										
	ND	0.250	0.293	mg/L	111		SW846	6010B	10/17-10/18/01	EL87
	ND	0.250	0 304	mg/L	115	3 7	CMB16	6010B	10/17-10/18/01	DT. OT

Calculations are performed before rounding to avoid round-off errors in calculated results.

NOTE(S):

MATRIX SPIKE SAMPLE EVALUATION REPORT

GC/MS Volatiles

Client Lot #: E1J1602 MS Lot-Sample #: E1J1502 Date Sampled: 10/15/0 Prep Date: 10/16/0 Prep Batch #: 1290323	04-001 1 15:45 Date 1 Analy	Received: 10	L6WD1C9 0/15/01 0/17/01	9-MSD 17:45 MS			
	PERCENT	RECOVERY		RPD			
PARAMETER	RECOVERY_	LIMITS	RPD	LIMITS	METHOD)	
Benzene	124 a,MSC	(75 - 120)			SW846	8260B	
	121 a, M SC	(75 - 120)	2.4	(0-25)	SW846	8260B	
Chlorobenzene	122 a,MSC	(80 - 120)			SW846	8260B	
	120	(80 - 120)	1.6	(0-25)	SW846	8260B	
1,1-Dichloroethene	117	(70 - 130)			SW846	8260B	
	118	(70 - 130)	0.85	(0-25)	SW846	8260B	
Toluene	116	(80 - 120)			SW846	8260B	
	116	(80 - 120)	0.17	(0-25)	SW846	8260B	
Trichloroethene	128	(75 - 130)			SW846	8260B	
	127	(75 - 130)	0.70	(0-25)	SW846	8260B	
		PERCENT		RECOVERY			
SURROGATE	_	RECOVERY		LIMITS			
Bromofluorobenzene		114		(75 - 120))		
		110		(75 - 120))		
1,2-Dichloroethane-d4		113		(65 - 130))		
		105		(65 - 130))		
Toluene-d8		112		(80 - 130))		
		108		(80 - 130))		

NOTE(S):

Calculations are performed before rounding to avoid round-off errors in calculated results.

a Spiked analyte recovery is outside stated control limits.

MSC The percent recovery of this analyte in the associated laboratory control sample is within control limits.

MATRIX SPIKE SAMPLE EVALUATION REPORT

TOTAL Metals

	#: E1J16 :d: 10/16	/01 13:15 Date F	≀eceived.	.: 10/	16/01 16:3	10	
PARAMETER	PERCENT RECOVERY	RECOVERY LIMITS RPD	RPD LIMITS	METHO	D	PREPARATION- ANALYSIS DATE	WORK ORDER #
MS Lot-Samp	le #: E1J16	0281-001 Prep F	Batch #	.: 129	0238		
Cadmium	101	(80 - 120)		SW846	6010B	10/17-10/18/01	EL8T51AF
	106	(80 - 120) 4.3	(0-20)	SW846	6010B	10/17-10/18/01	EL8T51AI
		Analysis Tim	ie: 16:56				
		MS Run #	: 12901	10			
Chromium	106	(85 - 120)		SW846	6010B	10/17-10/18/01	EL8T51AN
	110	(85 - 120) 3.7	(0-20)	SW846	6010B	10/17-10/18/01	EL8T51AN
		Analysis Tim	ne: 16:56				
		MS Run #	: 12901	10			
Copper	111	(80 - 120)		SW846	6010B	10/17-10/18/01	EL8T51AF
11	115	(80 - 120) 3.7	(0-20)	SW846	6010B	10/17-10/18/01	EL8T51AQ
		Analysis Tim	ne: 16:56				
		MS Run #	: 12901	10			

SAMPLE DUPLICATE EVALUATION REPORT

General Chemistry

Client	Lot #:	E1J160281	Work (order	#: EL EL	8T5-SMP 8T5-DUP	Matri	X WATER	
Date S	Sampled:	10/16/01 13:3	15 Date I	Receive	e d: 10	/16/01 16:10			
% Mois	ture:		Diluti	ion Fa	ctor:	I	nitia	l Wgt/Vol:	
		DUPLICATE			RPD			PREPARATION-	PREP
 PARAM	RESULT	RESULT	UNITS	RPD	LIMIT	METHOD		ANALYSIS DATE	BATCH #
pH						SD Lot-Sampl	e #:	E1J160281-001	
-	6.8	6.8	No Units	0.10	(0-0.0)	SW846 9040B		10/16/01	1289558
		Ar	nalvsis Tíme	: 17:	06 MS	Run Number: 12	89263		

Subcontract Reports

000035

2852 Alton Ave., Irvine, CA 92606 (949) 261-1022 FAX (949) 261-1228 1014 E. Cooley Dr., Suite A, Colton, CA 92324 (909) 370-4667 FAX (909) 370-1046 7277 Hayvenhurst, Suite B-12, Van Nuys, CA 91406 (818) 779-1844 FAX (818) 779-1843 9484 Chesapeake Dr., Suite 805, San Diego, CA 92123 (858) 505-8596 FAX (858) 505-9689 9830 South 51st St., Suite B-120, Phoenix, AZ 85044 (480) 785-0043 FAX (480) 785-0851 2520 E. Sunset Rd. #3, Las Vegas, NV 89120 (702) 798-3620 FAX (702) 798-3621

LABORATORY REPORT

Prepared For: STL Los Angeles

1721 S. Grand Avenue Santa Ana, CA 92705

Attention: Diane Suzuki Project: E1J160281 Sampled: 10/16/01 Received: 10/16/01 Reported: 10/25/01

This laboratory report is confidential and is intended for the sole use of Del Mar Analytical and its client. This entire report was reviewed and approved for release.

CA ELAP Certificate #1197 AZ DHS License #AZ0428

Del Mar Analytical, Irvine

Pat Abe

Project Manager

2852 Alton Ave., Irvine, CA 92606 (949) 261-1022 FAX (949) 261-1228 1014 E. Cooley Dr., Suite A, Colton, CA 92324 (909) 370-4667 FAX (909) 370-1046 7277 Hayvenhurst, Suite B-12, Van Nuys, CA 91406 (818) 779-1844 FAX (818) 779-1843 9484 Chesapeake Dr., Suite 805, San Diego, CA 92123 (858) 505-8596 FAX (858) 505-9689 9830 South 51st St., Suite B-120, Phoenix, AZ 85044 (480) 785-0043 FAX (480) 785-0851

STL Los Angeles

Analyte

1721 S. Grand Avenue

Santa Ana, CA 92705 Attention: Diane Suzuki Project ID: E1J160281

Report Number: IKJ0614

Method

Sampled: 10/16/01

Received: 10/16/01

INO	RGANICS				
Batch	Reporting Limit	Sample Result	Dilution Factor	Date Analyzed	Data Qualifiers
	mg/l	mg/l			

Sample ID: IKJ0614-01 (MW15-101601 - Water)

0.0020 ND 10/16/01 10/16/01 I1J1641 Sample ID: IKJ0614-02 (MW1D-101601 - Water) 10/16/01 Chromium VI EPA 7199 I1J1641 0.0020 ND 10/16/01

Del Mar Analytical, Irvine Pat Abe

Project Manager

2852 Alton Ave., Irvine, CA 92606 (949) 261-1022 FAX (949) 261-1228 1014 E. Cooley Dr., Suite A, Colton, CA 92324 (909) 370-4667 FAX (909) 370-1046 7277 Hayvenhurst, Suite B-12, Van Nuys, CA 91406 (818) 779-1844 FAX (818) 779-1843 9484 Chesapeake Dr., Suite 805, San Diego, CA 92123 (858) 505-8596 FAX (858) 505-9689 9830 South 51st St., Suite B-120, Phoenix, AZ 85044 (480) 785-0043 FAX (480) 785-0851

STL Los Angeles 1721 S. Grand Avenue

Santa Ana, CA 92705 Attention: Diane Suzuki Project ID: E1J160281

Report Number: IKJ0614

Sampled: 10/16/01 Received: 10/16/01

METHOD BLANK/QC DATA

INORGANICS

-		I	Reporting		Spike	Source		%REC		RPD	Data
_	Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Qualifiers
	Batch: 11J1641 Extracted: 10/16/01	-									
-	Blank Analyzed: 10/16/01 (I1J1641-	BLK1)									
	Chromium VI	ND	0.0020	mg/l							
	LCS Analyzed: 10/16/01 (I1J1641-B	SS1)									
-	Chromium VI	0.0508	0.0020	mg/l	0.0500		102	90-110			
	Matrix Spike Analyzed: 10/16/01 (I	IJ1641-MS1)			Source:	IKJ0614	-02			
	Chromium VI	0.0497	0.0020	mg/l	0.0500	ND	98.1	70-130			
***	Matrix Spike Dup Analyzed: 10/16/0	1 (I1J1641-	MSD1)			Source:	IKJ0614	-02			
	Chromium VI	0.0495	0.0020	mg/l	0.0500	ND	97.7	70-130	0.403	15	

Del Mar Analytical, Irvine

Pat Abe

Project Manager

2852 Alton Ave., Irvine, CA 92606 (949) 261-1022 FAX (949) 261-1228 1014 E. Cooley Dr., Suite A, Colton, CA 92324 (909) 370-4667 FAX (909) 370-1046 7277 Hayvenhurst, Suite B-12, Van Nuys, CA 91406 (818) 779-1844 FAX (818) 779-1843 9484 Chesapeake Dr., Suite 805, San Diego, CA 92123 (858) 505-8596 FAX (858) 505-9689 9830 South 51st St., Suite B-120, Phoenix, AZ 85044 (480) 785-0043 FAX (480) 785-0851

STL Los Angeles

Project ID: E1J160281

1721 S. Grand Avenue

Report Number: IKJ0614

Sampled: 10/16/01

Received: 10/16/01

Santa Ana, CA 92705 Attention: Diane Suzuki

DATA QUALIFIERS AND DEFINITIONS

ND Analyte NOT DETECTED at or above the reporting limit or MDL, if MDL is specified.

NR Not reported.

RPD Relative Percent Difference

Del Mar Analytical, Irvine Pat Abe

Project Manager

The results pertain only to the samples tested in the laboratory. This report shall not be reproduced, except in full, without written permission from Del Mar Analytical.

IKJ0614 < Page 4 of 4>

Santa Ana, CA 92705-4808

STL Los Angeles 1721 South Grand Avenue

Tel: 714 258 8610

Fax: 714 258 0921

www.stl-inc.com

October 26, 2001

STL LOT NUMBER: E1J180165 NELAP Certification Number: 01118CA PO/CONTRACT: 2279-11462-111.FLD

Sharon Wallin Camp, Dresser, McKee 18881 Von Karman, Suite 650 Irvine, CA 92612

Dear Ms. Wallin,

This report contains the analytical results for the four samples received under chain of custody by STL Los Angeles on October 18, 2001. These samples are associated with your PTI - Santa Fe Springs project.

All applicable quality control procedures met method-specified acceptance criteria except as noted on the following page. See Project Receipt Checklist for container temperature and conditions. Temperature reading between 2 to 6 degrees Celsius is considered within acceptable criteria. Any matrix related anomaly is footnoted within the report. The Hexavalent Chromium by 7199 analysis was performed by Del Mar Analytical. See attached report for any related anomaly.

STL Los Angeles certifies that the tests performed at our facility meet all NELAP requirements for parameters for which accreditation is required or available. The case narrative is an integral part of the report. This report shall not be reproduced except in full, without the written approval of the laboratory.

If you have any questions, please feel free to call me at (714) 258-8610 extension 309.

Sincerely,

Diane Suzuki Project Manager CC: Project File

Page 1 of 000046 total pages in this report.

LOT NUMBER E1J180165

Nonconformance 07-16600

Affected Samples:

E1J180165 (1): PTI-MW4A-051 E1J180165 (2): PTI-DI01-051 E1J180165 (3): PTI-EB01-051

Affected Methods:

8270C SIM, 1,4 Dioxane

Case Narrative:

Due to insufficient volume for MS/MSD, a LCS/DCS was prepared to measure accuracy of the batch.

PROJECT	r RECEIP	1 01120112			Date:/	1101		
Client Nan Received l	ne: <i>C/^/</i> / by: <u>/'/∠</u> by :	(P) DE	O(65 SSER\$]Airborne []]DES [MCKEE	Project:	Received: / Ultra-Ex	ECN P.E.	9.0
••••••	•••••					•••••••	••••••••	Initial /
Custody S Custody S	ieal Statu ieal #(s):_ ontainer(s	is: Intact	Broker Client in °C:	n Noi	ne	No Se	al #	HLT 11
Thermome	ter Used	OLER/BLANK)	a-red) A L	9°C Digital (Pro	be)	•••••		
Anomalies	:	□No		Yes (See C	louseau)			
Labeling ch	hecked by	y		••••	• • • • • • • • • • • • • • • • • • • •	•••••	•••••	
Turn Arour	nd Time:[_HUSH-24	HK UKUSH	1-48HH _	KUSH-/2F Eilter/Pres	R MOHN	1AL N/A	
			Date Sent Ou		ti iitei/i i eş	Lindoid		
					(inter/fres	·····		
					(inter/fres		·····	
			Date Sent Ou				······	
Outside An		(Test/Lab/	Date Sent Ou	t):			······	
Outside An	nalysis(es	(Test/Lab/	Date Sent Ou	t):			······	
Outside An	1/-> 3	(Test/Lab/	Date Sent Ou	t):			······	
Fraction VOAh 1° 11 A G 13	1/-> 3	(Test/Lab/	Date Sent Ou	t):			······	
Fraction VOAh 1° IL A G 13 TOOM P3	1/-> 3	(Test/Lab/	Date Sent Ou	t):			······	
Fraction VOAh 1° 11 A G 13	1/-> 3	(Test/Lab/	Date Sent Ou	t):			······	
Fraction VOAh 1° IL A G 13 TOOM P3	1/-> 3	(Test/Lab/	Date Sent Ou	t):			······	
Fraction VOAh 1° IL A G 13 TOOM P3	1/-> 3	(Test/Lab/	Date Sent Ou	t):			······	
Fraction VOAh 1° IL A G 13 TOOM P3	1/-> 3	(Test/Lab/	Date Sent Ou	t):			······	
Fraction VOAh 1° IL A G 13 TOOM P3	1/-> 3	(Test/Lab/	Date Sent Ou	t):			······	
Fraction VOAh 1° IL A G 13 TOOM P3	1/-> 3	(Test/Lab/	Date Sent Ou	t):			······	
Fraction VOAh 1° IL A G 13 TOOM P3	1/-> 3	(Test/Lab/	Date Sent Ou	t):			······	
Fraction VOAh 1° 11 A G 13 125me PB 125me PB	/-> 3	(Test/Lab/	Date Sent Ou	NO BLANK SPAC			······	
Fraction VOAh P LAGB TERM PB TERM PB	/-> 3	(Test/Lab/	Date Sent Ou	NO BLANK SPAC	ES; USE N/A			

Analytical Report

300000

EXECUTIVE SUMMARY - Detection Highlights

E1J180165

PARAMETER	RESULT	REPORTING LIMIT	UNITS	ANALYTICAL METHOD
PTI-MW4A-051 10/17/01 15:35 001				
Chloroform	1.1	1.0	ug/L	SW846 8260B
1,1-Dichloroethane	25	1.0	ug/L	SW846 8260B
1,1-Dichloroethene	6.2	1.0	ug/L	SW846 8260B
cis-1,2-Dichloroethene	1.7	1.0	ug/L	SW846 8260B
Tetrachloroethene	2.0	1.0	ug/L	SW846 8260B
Trichloroethene	22	1.0	ug/L	SW846 8260B
рН	7.5	0.10	No Units	SW846 9040B
Bromodichloromethane	1.1	1.0	ug/L	SW846 8260B
Bromoform	1.5	1.0	ug/L	SW846 8260B
Dibromochloromethane	1.6	1.0	ug/L	SW846 8260B
Chloroform	2.2	1.0	ug/L	SW846 8260B
рН	7.7	0.10	No Units	SW846 9040B
PTI-EB01-051 10/17/01 14:45 003				
Bromoform	1.4	1.0	ug/L	SW846 8260B
Dibromochloromethane	1.4	1.0	ug/L	SW846 8260B
Chloroform	2.0	1.0	ug/L	SW846 8260B
рН	7.7	0.10	No Units	SW846 9040B

METHODS SUMMARY

E1J180165

PARAMETER	ANALYTICAL METHOD	PREPARATION METHOD
pH Aqueous	SW846 9040B	SW846 9040B
Inductively Coupled Plasma (ICP) Metals	SW846 6010B	SW846 3005A
Volatile Organics by GC/MS	SW846 8260B	SW846 5030B/826
8270C (SIM)	SW846 8270C SI	MI

References:

SW846 "Test Methods for Evaluating Solid Waste, Physical/Chemical Methods", Third Edition, November 1986 and its updates.

SAMPLE SUMMARY

E1J180165

			SAMPLED	SAMP
WO #	SAMPLE#	CLIENT SAMPLE ID	DATE	TIME
EMCQ7	001	PTI-MW4A-051	10/17/01	15:35
 EMCRP	002	PTI-DI01-051	10/17/01	14:45
EMCTF	003	PTI-EB01-051	10/17/01	14:45
EMCTJ	004	TRIP BLANKS	10/17/01	

NOTE(S):

- The analytical results of the samples listed above are presented on the following pages.
- All calculations are performed before rounding to avoid round-off errors in calculated results.
- Results noted as "ND" were not detected at or above the stated limit.
- This report must not be reproduced, except in full, without the written approval of the laboratory.
- Results for the following parameters are never reported on a dry weight basis: color, corrosivity, density, flashpoint, ignitability, layers, odor, paint filter test, pH, porosity pressure, reactivity, redox potential, specific gravity, spot tests, solids, solubility, temperature, viscosity, and weight.

Client Sample ID: PTI-MW4A-051

GC/MS Semivolatiles

شذ	-		Work Order #:	_		:	WATER
	Date Sampled:	10/17/01 15:35	Date Received:	10/18/01 0:	9:20 MS Run	#:	
	Prep Date:	10/19/01	Analysis Date:	10/22/01			
- colors	Prep Batch #:	1292556	Analysis Time:	20:51			
			Method:	SW846 8270	C SIM		
				REPORTING			
-	PARAMETER		RESULT	LIMIT	UNITS	MDL	
	1,4-Dioxane		ND	0.95	ug/L	0.33	
			PERCENT	RECOVERY			
	SURROGATE		RECOVERY	LIMITS			
	2-Fluorophenol	-	63	(30 - 120)			
	Nitrobenzene-d5		75	(30 - 120)			

Client Sample ID: PTI-MW4A-051

GC/MS Volatiles

Lot-Sample #: E1J180165-00 Date Sampled: 10/17/01 15: Prep Date: 10/19/01 Prep Batch #: 1293151		10/18/01 10/19/01 23:23	09:20 MS R	rix: WA Run #: 12
	2000	REPORTING		V.
PARAMETER	RESULT	LIMIT	UNITS	MDL
Benzene Bromodichloromethane	ND	1.0	ug/L	0.30
Bromoform	ND	1.0	ug/L	0.30
	ND	1.0	ug/L	0.30
Bromomethane	ND	2.0	ug/L	1.0
Carbon tetrachloride	ND	1.0	ug/L	0.30
Chlorobenzene	ND	1.0	ug/L	0.30
Dibromochloromethane	ND	1.0	ug/L	0.40
Chloroethane	ND	2.0	ug/L	0.30
Chloroform	1.1	1.0	ug/L	0.30
Chloromethane	ND	2.0	ug/L	0.30
1,2-Dichlorobenzene	ND	1.0	ug/L	0.30
1,3-Dichlorobenzene	ND	1.0	ug/L	0.30
1,4-Dichlorobenzene	ND	1.0	ug/L	0.30
1,1-Dichloroethane	25	1.0	ug/L	0.20
1,2-Dichloroethane	ND	1.0	ug/L	0.40
1,1-Dichloroethene	6.2	1.0	ug/L	0.30
cis-1,2-Dichloroethene	1.7	1.0	ug/L	0.30
trans-1,2-Dichloroethene	ND	1.0	ug/L	0.30
1,2-Dichloropropane	ND	1.0	ug/L	0.30
cis-1,3-Dichloropropene	ND	1.0	ug/L	0.30
trans-1,3-Dichloropropene	ND	1.0	ug/L	0.50
Ethylbenzene	ND	1.0	ug/L	0.20
Methylene chloride	ND	1.0	ug/L	0.30
1,1,2,2-Tetrachloroethane	ND	1.0	ug/L	0.40
Tetrachloroethene	2.0	1.0	ug/L	0.30
Toluene	ND	1.0	ug/L	0.30
1,1,1-Trichloroethane	ND	1.0	ug/L	0.20
1,1,2-Trichloroethane	ND	1.0	ug/L	0.30
Trichloroethene	22	1.0	ug/L	0.30
Trichlorofluoromethane Vinyl chloride	ND ND	2.0	ug/L ug/L	0.30
m-Xylene & p-Xylene	ND	1.0	ug/L ug/L	0.50
o-Xylene & p-xylene	ND	1.0	ug/L	0.20
0-Ay1ene	PERCENT	RECOVERY	ug/ 11	0.20
SURROGATE	RECOVERY	LIMITS		
Bromofluorobenzene	101	(75 - 12 0)	
1,2-Dichloroethane-d4	100	(65 - 1 30)	
Toluene-d8	94	(80 - 1 30)	

Client Sample ID: PTI-DI01-051

GC/MS Semivolatiles

تنت ا	Lot-Sample #:	E1J180165-002	Work Order #:	EMCRP1AH	Matrix	:	WATER
	Date Sampled:	10/17/01 14:45	Date Received:	10/18/01 09	9:20 MS Run	#:	
	Prep Date:	10/19/01	Analysis Date:	10/22/01			
	Prep Batch #:	1292556	Analysis Time:	21:12			
_			Method:	SW846 82700	C SIM		
				REPORTING			
-	PARAMETER		RESULT	LIMIT	UNITS	MDL	
	1,4-Dioxane		ND	0.97	ug/L	0.33	
			PERCENT	RECOVERY			
***	SURROGATE		RECOVERY	LIMITS			
	2-Fluorophenol		70	(30 - 120)			
	Nitrobenzene-d5		83	(30 - 120)			

Client Sample ID: PTI-DI01-051

GC/MS Volatiles

Date Sampled: 10/17/01 14 Prep Date: 10/19/01	Analysis Date	e: 10/19/01		
Prep Batch #: 1293151	Analysis Time			
	Method	: SW846 82	160B	
		REPORTIN	r G	
PARAMETER	RESULT	LIMIT	UNITS	MDL
Benzene	ND	1.0	ug/L	0.30
Bromodichloromethane	1.1	1.0	ug/L	0.30
Bromoform	1.5	1.0	ug/L	0.30
Bromomethane	ND	2.0	ug/L	1.0
Carbon tetrachloride	ND	1.0	ug/L	0.30
Chlorobenzene	ND	1.0	ug/L	0.30
Dibromochloromethane	1.6	1.0	ug/L	0.40
Chloroethane	ND	2.0	ug/L	0.30
Chloroform	2.2	1.0	ug/L	0.30
Chloromethane	ND	2.0	ug/L	0.30
1,2-Dichlorobenzene	ND	1.0	ug/L	0.30
1,3-Dichlorobenzene	ND	1.0	ug/L	0.30
1,4-Dichlorobenzene	ND	1.0	ug/L	0.30
1,1-Dichloroethane	ND	1.0	ug/L	0.20
1,2-Dichloroethane	ND	1.0	ug/L	0.40
1,1-Dichloroethene	ND	1.0	ug/L	0.30
cis-1,2-Dichloroethene	ND	1.0	ug/L	0.30
trans-1,2-Dichloroethene	ND	1.0	ug/L	0.30
1,2-Dichloropropane	ND	1.0	ug/L	0.30
cis-1,3-Dichloropropene	ND	1.0	ug/L	0.30
trans-1,3-Dichloropropene	ND	1.0	ug/L	0.50
Ethylbenzene	ND	1.0	ug/L	0.20
Methylene chloride	ND	1.0	ug/L	0.30
1,1,2,2-Tetrachloroethane	ND	1.0	ug/L	0.40
Tetrachloroethene	ND	1.0	ug/L	0.30
Toluene	ND	1.0	ug/L	0.30
1,1,1-Trichloroethane	ND	1.0	ug/L	0.20
1,1,2-Trichloroethane	ND	1.0	ug/L	0.30
Trichloroethene	ND	1.0	ug/L	0.30
Trichlorofluoromethane	ND	2.0	ug/L	0.30
Vinyl chloride	ND	2.0	ug/L	0.30
m-Xylene & p-Xylene	ND	1.0	ug/L	0.50
o-Xylene	ND	1.0	ug/L	0.20
	PERCENT	RECOVERY		
SURROGATE	RECOVERY	LIMITS		
Bromofluorobenzene	100		0)	
1,2-Dichloroethane-d4	104	(65 - 13	•	
		0		

(80 - 130)

94

Toluene-d8

Client Sample ID: PTI-EB01-051

GC/MS Semivolatiles

-	Lot-Sample #: Date Sampled: Prep Date: Prep Batch #:	10/17/01 14:45 10/19/01		10/18/01 09 10/22/01 21:33	9:20 MS Run	#:	WATER
**	PARAMETER 1,4-Dioxane		RESULT ND	REPORTING LIMIT 0.95	UNITS ug/L	MDL 0.33	
	SURROGATE 2-Fluorophenol Nitrobenzene-d5		PERCENT RECOVERY 69 82	RECOVERY LIMITS (30 - 120) (30 - 120)			

Client Sample ID: PTI-EB01-051

GC/MS Volatiles

Prep Batch #: 1293151	Analysis Time		260B	
		REPORTIN	IG	
PARAMETER	RESULT	LIMIT	UNITS	MDL
Benzene	ND	1.0	ug/L	0.30
Bromodichloromethane	ND	1.0	ug/L	0.30
Bromoform	1.4	1.0	ug/L	0.30
Bromomethane	ND	2.0	ug/L	1.0
Carbon tetrachloride	ND	1.0	ug/L	0.30
Chlorobenzene	ND	1.0	ug/L	0.30
Dibromochloromethane	1.4	1.0	ug/L	0.40
Chloroethane	ND	2.0	ug/L	0.30
Chloroform	2.0	1.0	ug/L	0.30
Chloromethane	ND	2.0	ug/L	0.30
1,2-Dichlorobenzene	ND	1.0	ug/L	0.30
1,3-Dichlorobenzene	ND	1.0	ug/L	0.30
1,4-Dichlorobenzene	ND	1.0	ug/L	0.30
1,1-Dichloroethane	ND	1.0	ug/L	0.20
1,2-Dichloroethane	ND	1.0	ug/L	0.40
1,1-Dichloroethene	ND	1.0	ug/L	0.30
cis-1,2-Dichloroethene	ND	1.0	ug/L	0.30
trans-1,2-Dichloroethene	ND	1.0	ug/L	0.30
1,2-Dichloropropane	ND	1.0	ug/L	0.30
cis-1,3-Dichloropropene	ND	1.0	ug/L	0.30
trans-1,3-Dichloropropene	ND	1.0	ug/L	0.50
Ethylbenzene	ND	1.0	ug/L	0.20
Methylene chloride	ND	1.0	ug/L	0.30
1,1,2,2-Tetrachloroethane	ND	1.0	ug/L	0.40
Tetrachloroethene	ND	1.0	ug/L	0.30
Toluene	ND	1.0	ug/L	0.30
1,1,1-Trichloroethane	ND	1.0	ug/L	0.20
1,1,2-Trichloroethane	ND	1.0	ug/L	0.30
Trichloroethene	ND	1.0	ug/L	0.30
Trichlorofluoromethane	ND	2.0	ug/L	0.30
Vinyl chloride	ND	2.0	ug/L	0.30
m-Xylene & p-Xylene	ND	1.0	ug/L	0.50
o-Xylene	ND	1.0	ug/L	0.20
	PERCENT	RECOVERY	RECOVERY	
SURROGATE	RECOVERY	LIMITS		
Bromofluorobenzene	103	(75 - 12	20)	
1,2-Dichloroethane-d4	104	(65 - 13	30)	
m-1	0.6	/00 - 13	10)	

96

Toluene-d8

(80 - 130)

Client Sample ID: TRIP BLANKS

GC/MS Volatiles

Benzene	Prep Batch #: 1293151	Analysis Time Method		60B	
Benzene			REPORTIN	ſĠ	
Bromodichloromethane ND	PARAMETER	RESULT	LIMIT	UNITS	MDL
Bromoform	Benzene	ND	1.0	ug/L	0.30
Bromomethane	Bromodichloromethane	ND	1.0	ug/L	0.30
Carbon tetrachloride	Bromoform	ND	1.0	ug/L	0.30
Dibromochloromethane	Bromomethane	ND	2.0	ug/L	1.0
Dibromochloromethane ND 1.0 ug/L 0.40 Chloroethane ND 2.0 ug/L 0.30 Chloroform ND 1.0 ug/L 0.30 Chloroform ND 1.0 ug/L 0.30 Chloromethane ND 1.0 ug/L 0.30 Chloromethane ND 1.0 ug/L 0.30 1,2-Dichlorobenzene ND 1.0 ug/L 0.30 1,4-Dichlorobenzene ND 1.0 ug/L 0.30 1,4-Dichlorobenzene ND 1.0 ug/L 0.30 1,1-Dichloroethane ND 1.0 ug/L 0.20 1,2-Dichloroethane ND 1.0 ug/L 0.30 cis-1,2-Dichloroethene ND 1.0 ug/L 0.30 cis-1,2-Dichloroethene ND 1.0 ug/L 0.30 cis-1,2-Dichloroethene ND 1.0 ug/L 0.30 cis-1,3-Dichloropropene ND 1.0 ug/L 0.30 cis-1,3-Dichloroethene ND 1.0 ug/L 0.30 cis-1,3-Dichloroe	Carbon tetrachloride	ND	1.0	ug/L	0.30
Chloroethane ND 2.0 ug/L 0.30 Chloroform ND 1.0 ug/L 0.30 Chloromethane ND 2.0 ug/L 0.30 Chloromethane ND 1.0 ug/L 0.30 1,2-Dichlorobenzene ND 1.0 ug/L 0.30 1,3-Dichlorobenzene ND 1.0 ug/L 0.30 1,4-Dichlorobenzene ND 1.0 ug/L 0.30 1,1-Dichloroethane ND 1.0 ug/L 0.20 1,2-Dichloroethane ND 1.0 ug/L 0.30 1,1-Dichloroethane ND 1.0 ug/L 0.30 cis-1,2-Dichloroethene ND 1.0 ug/L 0.30 cis-1,2-Dichloroethene ND 1.0 ug/L 0.30 cis-1,2-Dichloroethene ND 1.0 ug/L 0.30 cis-1,3-Dichloropropene ND 1.0 ug/L 0.30 trans-1,3-Dichloropropene ND 1.0 ug/L 0.30 trans-1,3-Tichloropropene ND 1.0 ug/L 0.30 trans-1,3-Tichloroethane ND 1.0 ug/L 0.30 Trichloroethene ND 1.0 ug/L 0.30 Trichlorofluoromethane ND 1.0 ug/L 0.30	Chlorobenzene	ND	1.0	ug/L	0.30
Chloroform ND 1.0 ug/L 0.30 Chloromethane ND 2.0 ug/L 0.30 1,2-Dichlorobenzene ND 1.0 ug/L 0.30 1,3-Dichlorobenzene ND 1.0 ug/L 0.30 1,4-Dichlorobenzene ND 1.0 ug/L 0.30 1,4-Dichlorobenzene ND 1.0 ug/L 0.30 1,1-Dichloroethane ND 1.0 ug/L 0.20 1,2-Dichloroethane ND 1.0 ug/L 0.30 cis-1,2-Dichloroethene ND 1.0 ug/L 0.30 trans-1,2-Dichloroethene ND 1.0 ug/L 0.30 trans-1,2-Dichloropropane ND 1.0 ug/L 0.30 tzans-1,3-Dichloropropane ND 1.0 ug/L 0.30 cis-1,3-Dichloropropene ND 1.0 ug/L 0.30 trans-1,3-Dichloropropene ND 1.0 ug/L 0.30 trans-1,2-Dichloropropene ND 1.0 ug/L 0.30 trans-1,2-	Dibromochloromethane	ND	1.0	ug/L	0.40
Chloromethane	Chloroethane	ND	2.0	ug/L	0.30
1,2-Dichlorobenzene	Chloroform	ND	1.0	ug/L	0.30
1,3-Dichlorobenzene ND 1.0 ug/L 0.30 1,4-Dichlorobenzene ND 1.0 ug/L 0.30 1,1-Dichloroethane ND 1.0 ug/L 0.20 1,2-Dichloroethane ND 1.0 ug/L 0.40 1,1-Dichloroethene ND 1.0 ug/L 0.30 cis-1,2-Dichloroethene ND 1.0 ug/L 0.30 cis-1,2-Dichloroethene ND 1.0 ug/L 0.30 trans-1,2-Dichloroethene ND 1.0 ug/L 0.30 1,2-Dichloropropane ND 1.0 ug/L 0.30 cis-1,3-Dichloropropene ND 1.0 ug/L 0.30 cis-1,3-Dichloropropene ND 1.0 ug/L 0.30 trans-1,3-Dichloropropene ND 1.0 ug/L 0.30 trans-1,3-Dichloropropene ND 1.0 ug/L 0.30 trans-1,3-Dichloropropene ND 1.0 ug/L 0.50 Ethylbenzene ND 1.0 ug/L 0.50 Methylene chloride ND 1.0 ug/L 0.30 1,1,2,2-Tetrachloroethane ND 1.0 ug/L 0.30 Toluene ND 1.0 ug/L 0.30 Toluene ND 1.0 ug/L 0.30 Toluene ND 1.0 ug/L 0.30 Trichloroethane ND 1.0 ug/L 0.30 Trichloroethene ND 1.0 ug/L 0.30 Trichlorofluoromethane ND 1.0 ug/L 0.50	Chloromethane	ND	2.0	ug/L	0.30
1,4-Dichlorobenzene ND 1.0 ug/L 0.30 1,1-Dichloroethane ND 1.0 ug/L 0.20 1,2-Dichloroethane ND 1.0 ug/L 0.40 1,1-Dichloroethene ND 1.0 ug/L 0.30 cis-1,2-Dichloroethene ND 1.0 ug/L 0.30 cis-1,2-Dichloroethene ND 1.0 ug/L 0.30 trans-1,2-Dichloroethene ND 1.0 ug/L 0.30 1,2-Dichloropropane ND 1.0 ug/L 0.30 cis-1,3-Dichloropropene ND 1.0 ug/L 0.30 cis-1,3-Dichloropropene ND 1.0 ug/L 0.30 trans-1,3-Dichloropropene ND 1.0 ug/L 0.30 trans-1,2-Tetrachloroethane ND 1.0 ug/L 0.20 Methylene chloride ND 1.0 ug/L 0.30 1,1,2,2-Tetrachloroethane ND 1.0 ug/L 0.30 1,1,2,2-Tetrachloroethane ND 1.0 ug/L 0.30 Toluene ND 1.0 ug/L 0.30 Toluene ND 1.0 ug/L 0.30 1,1,1-Trichloroethane ND 1.0 ug/L 0.30 Trichloroethene ND 1.0 ug/L 0.30 Trichlorofluoromethane ND 1.0 ug/L 0.30	1,2-Dichlorobenzene	ND	1.0	ug/L	0.30
1,1-Dichloroethane	1,3-Dichlorobenzene	ND	1.0	ug/L	0.30
1,2-Dichloroethane ND 1.0 ug/L 0.40 1,1-Dichloroethene ND 1.0 ug/L 0.30 cis-1,2-Dichloroethene ND 1.0 ug/L 0.30 trans-1,2-Dichloroethene ND 1.0 ug/L 0.30 1,2-Dichloropropane ND 1.0 ug/L 0.30 cis-1,3-Dichloropropene ND 1.0 ug/L 0.30 cis-1,3-Dichloropropene ND 1.0 ug/L 0.50 Ethylbenzene ND 1.0 ug/L 0.50 Ethylbenzene ND 1.0 ug/L 0.20 Methylene chloride ND 1.0 ug/L 0.30 1,1,2,2-Tetrachloroethane ND 1.0 ug/L 0.30 1,1,2,2-Tetrachloroethane ND 1.0 ug/L 0.30 Toluene ND 1.0 ug/L 0.30 Toluene ND 1.0 ug/L 0.30 Trichloroethane ND 1.0 ug/L 0.30 Trichlorofluoromethane ND 2.0 ug/L 0.30 Trichlorofluoromethane ND 1.0 ug/L 0.50 m-Xylene & p-Xylene ND 1.0 ug/L 0.50 m-Xylene ND 1.0 ug/L 0.50 D-Xylene ND 1.0 ug/L 0.50	1,4-Dichlorobenzene	ND	1.0	ug/L	0.30
1,1-Dichloroethene ND 1.0 ug/L 0.30 cis-1,2-Dichloroethene ND 1.0 ug/L 0.30 trans-1,2-Dichloroethene ND 1.0 ug/L 0.30 trans-1,2-Dichloroethene ND 1.0 ug/L 0.30 l,2-Dichloropropane ND 1.0 ug/L 0.30 cis-1,3-Dichloropropene ND 1.0 ug/L 0.30 trans-1,3-Dichloropropene ND 1.0 ug/L 0.50 Ethylbenzene ND 1.0 ug/L 0.50 Ethylbenzene ND 1.0 ug/L 0.20 Methylene chloride ND 1.0 ug/L 0.30 l,1,2,2-Tetrachloroethane ND 1.0 ug/L 0.30 l,1,2,2-Tetrachloroethane ND 1.0 ug/L 0.30 Toluene ND 1.0 ug/L 0.30 Trichloroethane ND 1.0 ug/L 0.30 Trichloroethene ND 1.0 ug/L 0.30 Trichloroethene ND 1.0 ug/L 0.30 Trichlorofluoromethane ND 1.0 ug/L 0.30 Trichlorofluoromethane ND 1.0 ug/L 0.30 Trichlorofluoromethane ND 2.0 ug/L 0.30 Trichlorofluoromethane ND 2.0 ug/L 0.30 m-Xylene & p-Xylene ND 1.0 ug/L 0.50 o-Xylene ND 1.0 ug/L 0.20	1,1-Dichloroethane	ND	1.0	ug/L	0.20
cis-1,2-Dichloroethene ND 1.0 ug/L 0.30 trans-1,2-Dichloroethene ND 1.0 ug/L 0.30 1,2-Dichloropropane ND 1.0 ug/L 0.30 cis-1,3-Dichloropropene ND 1.0 ug/L 0.30 trans-1,3-Dichloropropene ND 1.0 ug/L 0.50 Ethylbenzene ND 1.0 ug/L 0.20 Methylene chloride ND 1.0 ug/L 0.30 1,1,2,2-Tetrachloroethane ND 1.0 ug/L 0.40 Tetrachloroethene ND 1.0 ug/L 0.30 Toluene ND 1.0 ug/L 0.30 Toluene ND 1.0 ug/L 0.30 1,1,2-Trichloroethane ND 1.0 ug/L 0.30 1,1,2-Trichloroethane ND 1.0 ug/L 0.30 Trichloroethene ND 1.0 ug/L 0.30 Trichlorofluoromethane ND <th< td=""><td>1,2-Dichloroethane</td><td>ND</td><td>1.0</td><td>ug/L</td><td>0.40</td></th<>	1,2-Dichloroethane	ND	1.0	ug/L	0.40
cis-1,2-Dichloroethene ND 1.0 ug/L 0.30 trans-1,2-Dichloroethene ND 1.0 ug/L 0.30 1,2-Dichloropropane ND 1.0 ug/L 0.30 cis-1,3-Dichloropropene ND 1.0 ug/L 0.50 Ethylbenzene ND 1.0 ug/L 0.20 Methylene chloride ND 1.0 ug/L 0.30 1,1,2,2-Tetrachloroethane ND 1.0 ug/L 0.40 Tetrachloroethene ND 1.0 ug/L 0.30 Toluene ND 1.0 ug/L 0.30 1,1,1-Trichloroethane ND 1.0 ug/L 0.30 1,1,2-Trichloroethane ND 1.0 ug/L 0.30 Trichloroethene ND 1.0 ug/L 0.30 Trichlorofluoromethane ND 2.0 ug/L 0.30 Winyl chloride ND 1.0 ug/L 0.50 m-Xylene PERCENT RECO	1,1-Dichloroethene	ND	1.0	ug/L	0.30
trans-1,2-Dichloroethene ND 1.0 ug/L 0.30 1,2-Dichloropropane ND 1.0 ug/L 0.30 cis-1,3-Dichloropropene ND 1.0 ug/L 0.30 trans-1,3-Dichloropropene ND 1.0 ug/L 0.50 Ethylbenzene ND 1.0 ug/L 0.20 Methylene chloride ND 1.0 ug/L 0.30 1,1,2,2-Tetrachloroethane ND 1.0 ug/L 0.30 1,1,2,2-Tetrachloroethane ND 1.0 ug/L 0.30 Toluene ND 1.0 ug/L 0.30 1,1,1-Trichloroethane ND 1.0 ug/L 0.30 1,1,2-Trichloroethane ND 1.0 ug/L 0.30 Trichlorofluoromethane ND 1.0 ug/L 0.30 Trichloride ND 2.0 ug/L 0.30 Winyl chloride ND 1.0 ug/L 0.50 m-Xylene ND 1.	cis-1,2-Dichloroethene	ND	1.0	ug/L	0.30
1,2-Dichloropropane ND 1.0 ug/L 0.30 cis-1,3-Dichloropropene ND 1.0 ug/L 0.30 trans-1,3-Dichloropropene ND 1.0 ug/L 0.50 Ethylbenzene ND 1.0 ug/L 0.20 Methylene chloride ND 1.0 ug/L 0.30 1,1,2,2-Tetrachloroethane ND 1.0 ug/L 0.30 Toluene ND 1.0 ug/L 0.30 Toluene ND 1.0 ug/L 0.30 1,1,1-Trichloroethane ND 1.0 ug/L 0.30 Trichloroethene ND 1.0 ug/L 0.30 Trichlorofluoromethane ND 1.0 ug/L 0.30 Vinyl chloride ND 2.0 ug/L 0.30 m-Xylene & p-Xylene ND 1.0 ug/L 0.50 o-Xylene ND 1.0 ug/L 0.20		ND	1.0	_	0.30
cis-1,3-Dichloropropene ND 1.0 ug/L 0.30 trans-1,3-Dichloropropene ND 1.0 ug/L 0.50 Ethylbenzene ND 1.0 ug/L 0.20 Methylene chloride ND 1.0 ug/L 0.30 1,1,2,2-Tetrachloroethane ND 1.0 ug/L 0.30 Tetrachloroethene ND 1.0 ug/L 0.30 Toluene ND 1.0 ug/L 0.30 1,1,1-Trichloroethane ND 1.0 ug/L 0.30 1,1,2-Trichloroethane ND 1.0 ug/L 0.30 Trichloroethene ND 1.0 ug/L 0.30 Trichlorofluoromethane ND 2.0 ug/L 0.30 Winyl chloride ND 2.0 ug/L 0.30 m-Xylene & p-Xylene ND 1.0 ug/L 0.50 o-Xylene ND 1.0 ug/L 0.20		ND	1.0	_	
trans-1,3-Dichloropropene ND 1.0 ug/L 0.50 Ethylbenzene ND 1.0 ug/L 0.20 Methylene chloride ND 1.0 ug/L 0.30 1,1,2,2-Tetrachloroethane ND 1.0 ug/L 0.40 Tetrachloroethane ND 1.0 ug/L 0.30 Toluene ND 1.0 ug/L 0.30 1,1,1-Trichloroethane ND 1.0 ug/L 0.30 1,1,2-Trichloroethane ND 1.0 ug/L 0.30 Trichloroethane ND 1.0 ug/L 0.30 Trichloroethane ND 2.0 ug/L 0.30 Trichlorofluoromethane ND 2.0 ug/L 0.30 Winyl chloride ND 2.0 ug/L 0.30 m-Xylene & p-Xylene ND 1.0 ug/L 0.50 o-Xylene ND 1.0 ug/L 0.20		ND	1.0	_	0.30
### Ethylbenzene ND 1.0 ug/L 0.20 Methylene chloride ND 1.0 ug/L 0.30		ND	1.0	_	0.50
Methylene chloride ND 1.0 ug/L 0.30 1,1,2,2-Tetrachloroethane ND 1.0 ug/L 0.40 Tetrachloroethane ND 1.0 ug/L 0.30 Toluene ND 1.0 ug/L 0.30 1,1,1-Trichloroethane ND 1.0 ug/L 0.30 1,1,2-Trichloroethane ND 1.0 ug/L 0.30 Trichloroethane ND 1.0 ug/L 0.30 Trichlorofluoromethane ND 2.0 ug/L 0.30 Vinyl chloride ND 2.0 ug/L 0.30 m-Xylene & p-Xylene ND 1.0 ug/L 0.50 o-Xylene ND 1.0 ug/L 0.20		ND	1.0		0.20
1,1,2,2-Tetrachloroethane ND 1.0 ug/L 0.40 Tetrachloroethene ND 1.0 ug/L 0.30 Toluene ND 1.0 ug/L 0.30 1,1,1-Trichloroethane ND 1.0 ug/L 0.30 1,1,2-Trichloroethane ND 1.0 ug/L 0.30 Trichloroethene ND 1.0 ug/L 0.30 Trichlorofluoromethane ND 2.0 ug/L 0.30 Vinyl chloride ND 2.0 ug/L 0.30 m-Xylene & p-Xylene ND 1.0 ug/L 0.50 o-Xylene ND 1.0 ug/L 0.20	-	ND	1.0	_	0.30
Tetrachloroethene ND 1.0 ug/L 0.30 Toluene ND 1.0 ug/L 0.30 1,1,1-Trichloroethane ND 1.0 ug/L 0.20 1,1,2-Trichloroethane ND 1.0 ug/L 0.30 Trichloroethene ND 1.0 ug/L 0.30 Trichlorofluoromethane ND 2.0 ug/L 0.30 Vinyl chloride ND 2.0 ug/L 0.30 m-Xylene & p-Xylene ND 1.0 ug/L 0.50 o-Xylene ND 1.0 ug/L 0.20	-	ND	1.0		0.40
Toluene	Tetrachloroethene	ND	1.0		0.30
1,1,2-Trichloroethane ND 1.0 ug/L 0.30 Trichloroethene ND 1.0 ug/L 0.30 Trichlorofluoromethane ND 2.0 ug/L 0.30 Vinyl chloride ND 2.0 ug/L 0.30 m-Xylene & p-Xylene ND 1.0 ug/L 0.50 o-Xylene ND 1.0 ug/L 0.20	Toluene	ND	1.0	_	0.30
Trichloroethene ND 1.0 ug/L 0.30 Trichlorofluoromethane ND 2.0 ug/L 0.30 Vinyl chloride ND 2.0 ug/L 0.30 m-Xylene & p-Xylene ND 1.0 ug/L 0.50 o-Xylene ND 1.0 ug/L 0.20 PERCENT RECOVERY	1,1,1-Trichloroethane	ND	1.0	ug/L	0.20
Trichlorofluoromethane ND 2.0 ug/L 0.30 Vinyl chloride ND 2.0 ug/L 0.30 m-Xylene & p-Xylene ND 1.0 ug/L 0.50 o-Xylene ND 1.0 ug/L 0.20 PERCENT RECOVERY	1,1,2-Trichloroethane	ND	1.0	ug/L	0.30
Trichlorofluoromethane ND 2.0 ug/L 0.30 Vinyl chloride ND 2.0 ug/L 0.30 m-Xylene & p-Xylene ND 1.0 ug/L 0.50 o-Xylene ND 1.0 ug/L 0.20 PERCENT RECOVERY	Trichloroethene	ND	1.0	ug/L	0.30
m-Xylene & p-Xylene ND 1.0 ug/L 0.50 o-Xylene ND 1.0 ug/L 0.20 PERCENT RECOVERY	Trichlorofluoromethane	ND	2.0	_	0.30
m-Xylene & p-Xylene ND 1.0 ug/L 0.50 o-Xylene ND 1.0 ug/L 0.20 PERCENT RECOVERY	Vinyl chloride	ND	2.0	ug/L	0.30
o-Xylene ND 1.0 ug/L 0.20 PERCENT RECOVERY	m-Xylene & p-Xylene	ND	1.0		0.50
	o-Xylene	ND	1.0		0.20
SURROGATE RECOVERY LIMITS		PERCENT	RECOVERY		
	SURROGATE	RECOVERY	LIMITS		
	1,2-Dichloroethane-d4	100	(65 - 13	0)	
1,2-Dichloroethane-d4 100 (65 - 130)	- 1 10	2.0	/00 73	0.)	

(80 - 130)

99

Toluene-d8

Client Sample ID: PTI-MW4A-051

General Chemistry

Lot-Sample #:	E1J180165-001	Work Order #: EMCQ7	Matrix: WATER
Date Campled .	10/17/01 15.25	Date Beggived - 10/19/01	00.20

Date Sampled...: 10/17/01 15:35 Date Received..: 10/18/01 09:20

pН	7.5	0.10	No Units	SW846 9040B	10/18/01	1291278
PARAMETER	RESULT	RL_	UNITS	METHOD	ANALYSIS DATE	BATCH #
					PREPARATION-	PREP

Client Sample ID: PTI-DI01-051

General Chemistry

Lot-Sample #:	E1J180165-002	Work Order #: EMCRP	Matrix WATER
Date Campled .	10/17/01 14.45	Date Peceived . 10/18/01 09:20	

Date Sampled...: 10/17/01 14:45 Date Received..: 10/18/01 09:20

Client Sample ID: PTI-EB01-051

General Chemistry

الأناك . الأناك	Lot-Sample #:	E1J180165-003	Work	Order #:	EMCTF	Matrix:	WATER
	Date Sampled:	10/17/01 14:45	Date	Received:	10/18/01 09:20		
						PREPARATION-	PREP
-	PARAMETER	RESULT	RL	UNITS	METHOD	ANALYSIS DATE	BATCH #
	pН	7.7	0.10	No Units	SW846 9040B	10/18/01	1291278
		Analy	ysis Tim	ne: 12:11	MS Run # 1	291180 MDL	:

Client Sample ID: PTI-MW4A-051

TOTAL Metals

Lot-Sample #...: E1J180165-001 Matrix....: WATER

Date Sampled...: 10/17/01 15:35 Date Received..: 10/18/01 09:20

PARAMETER	RESULT	REPORTING LIMIT UNITS	METHOD	PREPARATION- WORK ANALYSIS DATE ORDER #
Prep Batch #.	: 1291182			
Cadmium	ND	0.0050 mg/L	SW846 6010B	10/18-10/19/01 EMCQ71AC
		Analysis Time: 21:54	MS Run #: 1	.291063 MDL 0.00060
Chromium	ND	0.010 mg/L	SW846 6010B	10/18-10/19/01 EMCQ71AD
		Analysis Time: 21:54	MS Run #: 1	291063 MDL 0.0010
Copper	ND	0.025 mg/L	SW846 6010B	10/18-10/19/01 EMCQ71AE
		Analysis Time: 21:54	MS Run # 1	.291063 MDL 0.0040

Client Sample ID: PTI-DI01-051

TOTAL Metals

Lot-Sample #...: E1J180165-002 Matrix....: WATER

Date Sampled...: 10/17/01 14:45 Date Received..: 10/18/01 09:20

PARAMETER	RESULT	REPORTING LIMIT UNITS	METHOD	PREPARATION- WORK ANALYSIS DATE ORDER #
Prep Batch #	: 1291182			
Cadmium	ND	$0.0050~{ m mg/L}$	SW846 6010B	10/18-10/19/01 EMCRP1AC
		Analysis Time: 22:03	MS Run #: 129	1063 MDL 0.00060
Chromium	ND	0.010 mg/L	SW846 6010B	10/18-10/19/01 EMCRP1AD
		Analysis Time: 22:03	MS Run #: 129	1063 MDL 0.0010
Copper	ND	0.025 mg/L	SW846 6010B	10/18-10/19/01 EMCRP1AE
		Analysis Time: 22:03	MS Run #: 129	1063 MDL 0.0040

Client Sample ID: PTI-EB01-051

TOTAL Metals

Lot-Sample #...: E1J180165-003 Matrix....: WATER

Date Sampled...: 10/17/01 14:45 Date Received..: 10/18/01 09:20

PARAMETER	RESULT	REPORTING LIMIT UNITS	METHOD	PREPARATION- WORK ANALYSIS DATE ORDER #
Prep Batch #	.: 1291182			
Cadmium	ND	0.0050 mg/L	SW846 6010B	10/18-10/19/01 EMCTF1AC
		Analysis Time: 22:11	MS Run #: 12910	63 MDL 0.00060
Chromium	ND	0.010 mg/L	SW846 6010B	10/18-10/19/01 EMCTF1AD
		Analysis Time: 22:11	MS Run #: 12910	63 MDL 0.0010
Copper	ND	0.025 mg/L	SW846 6010B	10/18-10/19/01 EMCTF1AE
••		Analysis Time: 22:11	MS Run #: 12910	63 MDL 0.0040

QA/QC

QC DATA ASSOCIATION SUMMARY

E1J180165

Sample Preparation and Analysis Control Numbers

-			ANALYTICAL	LEACH	PREP	
	SAMPLE#	MATRIX	METHOD	BATCH #	BATCH #	MS RUN#
	001	WATER	SW846 8270C SIM		1292556	
		WATER	SW846 9040B		1291278	1291180
		WATER	SW846 8260B		1293151	1293033
		WATER	SW846 6010B		1291182	1291063
	002	WATER	SW846 8270C SIM		1292556	
		WATER	SW846 9040B		1291278	1291180
		WATER	SW846 8260B		1293151	1293033
		WATER	SW846 6010B		1291182	1291063
	003	WATER	SW846 8270C SIM		1292556	
		WATER	SW846 9040B		1291278	1291180
		WATER	SW846 8260B		1293151	1293033
		WATER	SW846 6010B		1291182	1291063
	004	WATER	SW846 8260B		1293151	1293033

METHOD BLANK REPORT

GC/MS Semivolatiles

Client Lot #...: E1J180165 Work Order #...: EMG681AA

Matrix....: WATER

MB Lot-Sample #: G1J190000-556

Prep Date....: 10/19/01

Analysis Time..: 18:25

Analysis Date..: 10/22/01

Prep Batch #...: 1292556

 REPORTING

 PARAMETER
 RESULT
 LIMIT
 UNITS
 METHOD

 1,4-Dioxane
 ND
 1.0
 ug/L
 SW846 8270C SIM

 SURROGATE
 RECOVERY
 LIMITS

 2-Fluorophenol
 78
 (30 - 120)

 Nitrobenzene-d5
 86
 (30 - 120)

NOTE(S):

METHOD BLANK REPORT

GC/MS Volatiles

Client Lot #...: E1J180165 Work Order #...: EMHXV1AA Matrix.....: WATER

MB Lot-Sample #: E1J200000-151

Prep Date....: 10/19/01 Analysis Time..: 22:24

		REPORTI	NG	
PARAMETER	RESULT	LIMIT	UNITS	METHOD
Benzene	ND	1.0	ug/L	SW846 8260B
Bromodichloromethane	ND	1.0	ug/L	SW846 8260B
Bromoform	ND	1.0	ug/L	SW846 8260B
Bromomethane	ND	2.0	ug/L	SW846 8260B
Carbon tetrachloride	ND	1.0	ug/L	SW846 8260B
Chlorobenzene	ND	1.0	ug/L	SW846 8260B
Dibromochloromethane	ND	1.0	ug/L	SW846 8260B
Chloroethane	ND	2.0	ug/L	SW846 8260B
Chloroform	ND	1.0	ug/L	SW846 8260B
Chloromethane	ND	2.0	ug/L	SW846 8260B
1,2-Dichlorobenzene	ND	1.0	ug/L	SW846 8260B
1,3-Dichlorobenzene	ND	1.0	ug/L	SW846 8260B
1,4-Dichlorobenzene	ND	1.0	ug/L	SW846 8260B
1,1-Dichloroethane	ND	1.0	ug/L	SW846 8260B
1,2-Dichloroethane	ND	1.0	ug/L	SW846 8260B
1,1-Dichloroethene	ND	1.0	ug/L	SW846 8260B
cis-1,2-Dichloroethene	ND	1.0	ug/L	SW846 8260B
trans-1,2-Dichloroethene	ND	1.0	ug/L	SW846 8260B
1,2-Dichloropropane	ND	1.0	ug/L	SW846 8260B
cis-1,3-Dichloropropene	ND	1.0	ug/L	SW846 8260B
trans-1,3-Dichloropropene	ND	1.0	ug/L	SW846 8260B
Ethylbenzene	ND	1.0	ug/L	SW846 8260B
Methylene chloride	ND	1.0	ug/L	SW846 8260B
1,1,2,2-Tetrachloroethane	ND	1.0	ug/L	SW846 8260B
Tetrachloroethene	ND	1.0	ug/L	SW846 8260B
Toluene	ND	1.0	ug/L	SW846 8260B
1,1,1-Trichloroethane	ND	1.0	ug/L	SW846 8260B
1,1,2-Trichloroethane	ND	1.0	ug/L	SW846 8260B
Trichloroethene	ND	1.0	ug/L	SW846 8260B
Trichlorofluoromethane	ND	2.0	ug/L	SW846 8260B
Vinyl chloride	ND	2.0	ug/L	SW846 8260B
m-Xylene & p-Xylene	ND	1.0	ug/L	SW846 8260B
o-Xylene	ND	1.0	ug/L	SW846 8260B
	PERCENT	RECOVER	Y	
SURROGATE	RECOVERY	LIMITS		
Bromofluorobenzene	98	(75 - 1	- •	
1,2-Dichloroethane-d4	102	(65 - 1		
Toluene-d8	96	(80 - 1	30)	

NOTE(S):

METHOD BLANK REPORT

TOTAL Metals

	Client Lot #: E1J180165				Matrix: WATER		
	PARAMETER	RESULT	REPORTING LIMIT	UNITS	METHOD	PREPARATION- WOR	K ER #_
	MB Lot-Sample #	: E1J180000-1	82 Prep Bat	tch #: 12	291182		
_	Cadmium	ND	0.0050	mg/L	SW846 6010B	10/18-10/19/01 EMC	H11AA
			Analysis Time.	.: 18:30			
	Chromium	ND	0.010	mg/L	SW846 6010B	10/18-10/19/01 EMC	H11AC
			Analysis Time.	.: 18:30			
	Copper	ND	0.025	mq/L	SW846 6010B	10/18-10/19/01 EMC	H11AD
-	007702		Analysis Time.	J.		, , , , , , , , , , , , , , , , , , , ,	

Calculations are performed before rounding to avoid round-off errors in calculated results.

NOTE(S):

GC/MS Semivolatiles

Client Lot #...: E1J180165 Work Order #...: EMG681AC-LCS Matrix.....: WATER

LCS Lot-Sample#: G1J190000-556 EMG681AD-LCSD

 Prep Date.....: 10/19/01
 Analysis Date..: 10/22/01

 Prep Batch #...: 1292556
 Analysis Time..: 18:46

PARAMETER 1,4-Dioxane	SPIKE AMOUNT 10.0	MEASURED AMOUNT 4.32	UNITS ug/L	PERCENT RECOVERY 43	RPD	METHOD SW846 8270C SIM
,	10.0	4.57	ug/L	46	5.6	SW846 8270C SIM
			PERCENT	RECOVERY		
SURROGATE			RECOVERY	LIMITS	_	
2-Fluorophenol			77	(30 - 120)	
			75	(30 - 120)	
Nitrobenzene-d5			84	(30 - 120)	
			88	(30 - 120)	

NOTE(S):

Calculations are performed before rounding to avoid round-off errors in calculated results.

GC/MS Semivolatiles

Client Lot #: E1J1 LCS Lot-Sample#: G1J1 Prep Date: 10/1 Prep Batch #: 1292	190000-556 19/01 Analysis Da	te: 10/22/	AD-LCSD	x: WATER
PARAMETER 1,4-Dioxane	PERCENT RECOVERY 43 46	RECOVERY LIMITS (30 - 120) (30 - 120)	RPD LIMITS 5.6 (0-35)	METHOD SW846 8270C SIM SW846 8270C SIM
SURROGATE 2-Fluorophenol		PERCENT RECOVERY 77 75	RECOVERY <u>LIMITS</u> (30 - 120) (30 - 120)	
Nitrobenzene-d5		84	(30 - 120)	

88

(30 - 120)

NOTE(S):

Calculations are performed before rounding to avoid round-off errors in calculated results.

GC/MS Volatiles

Client Lot #...: E1J180165 Work Order #...: EMHXV1AC Matrix.....: WATER

LCS Lot-Sample#: E1J200000-151

 Prep Date.....: 10/19/01
 Analysis Date..: 10/19/01

 Prep Batch #...: 1293151
 Analysis Time..: 21:24

	SPIKE	MEASURED		PERCENT	
PARAMETER	AMOUNT	AMOUNT	UNITS	RECOVERY	METHOD
Benzene	10.0	10.3	ug/L	103	SW846 8260B
Chlorobenzene	10.0	10.0	ug/L	100	SW846 8260B
1,1-Dichloroethene	10.0	10.5	ug/L	105	SW846 8260B
Toluene	10.0	10.3	ug/L	103	SW846 8260B
Trichloroethene	10.0	10.2	ug/L	102	SW846 8260B

	PERCENT	RECOVERY
SURROGATE	RECOVERY	LIMITS
Bromofluorobenzene	101	(75 - 120)
1,2-Dichloroethane-d4	100	(65 - 130)
Toluene-d8	98	(80 - 130)

NOTE(S):

Calculations are performed before rounding to avoid round-off errors in calculated results.

TOTAL Metals

Client Lot #: E1J180165							Matrix:	WATER
	SPIKE	MEASURE	ED	PERCNT			PREPARATION-	WORK
PARAMETER	AMOUNT	TUUOMA	UNITS	RECVRY	METHO)	ANALYSIS DATE	ORDER #
LCS Lot-Samp	ole#: E1J	180000-1	182 Prep Ba	tch #	: 1291	182		
Cadmium	0.0500	0.0487	mg/L	97	SW846	6010B	10/18-10/19/01	EMCH11AE
			Analysis Time.	.: 18:36				
Chromium	0.200	0.201	mg/L	100	SW846	6010B	10/18-10/19/01	EMCH11AF
			Analysis Time.	.: 18:36				
Copper	0.250	0.240	mg/L	96	SW846	6010B	10/18-10/19/01	EMCH11AG
			Analysis Time.	.: 18:36				
NOTE(S)								

General Chemistry

Client Lot #...: E1J180165 Matrix....: WATER

Analysis Time..: 11:59

NOTE(S):

GC/MS Volatiles

Client Lot #...: E1J180165 Work Order #...: EMHXV1AC Matrix..... WATER

LCS Lot-Sample#: E1J200000-151

 Prep Date.....: 10/19/01
 Analysis Date..: 10/19/01

 Prep Batch #...: 1293151
 Analysis Time..: 21:24

	PERCENT	RECOVERY	
PARAMETER	RECOVERY	LIMITS	METHOD
Benzene	103	(75 - 120)	SW846 8260B
Chlorobenzene	100	(80 - 120)	SW846 8260B
1,1-Dichloroethene	105	(70 - 130)	SW846 8260B
Toluene	103	(80 - 120)	SW846 8260B
Trichloroethene	102	(75 - 130)	SW846 8260B

	PERCENT	RECOVERY
SURROGATE	RECOVERY	LIMITS
Bromofluorobenzene	101	(75 - 120)
1,2-Dichloroethane-d4	100	(65 - 130)
Toluene-d8	98	(80 - 130)

NOTE(S):

Calculations are performed before rounding to avoid round-off errors in calculated results.

TOTAL Metals

Client Lot #:	E1J180165		Matrix: WATER			
PARAMETER	PERCENT RECOVERY	RECOVERY LIMITS	METHOD	PREPARATION- ANALYSIS DATE	WORK ORDER #	
LCS Lot-Sample#:	E1J180000-	182 Prep Ba	tch #: 1291182			
Cadmium	97	(80 - 120)	SW846 6010B	10/18-10/19/01	EMCH11AE	
		Analysis Time.	.: 18:36			
Chromium	100	(85 - 120)	SW846 6010B	10/18-10/19/01	EMCH11AF	
		Analysis Time.	.: 18:36			
Copper	96	(80 - 120)	SW846 6010B	10/18-10/19/01	EMCH11AG	
		Analysis Time.	.: 18:36			

General Chemistry

Client Lot #...: E1J180165 Matrix....: WATER

 PERCENT
 RECOVERY
 PREPARATION - PREP

 PARAMETER
 RECOVERY
 LIMITS
 METHOD
 ANALYSIS DATE
 BATCH #

 pH
 Work Order #: EMC9G1AA
 LCS Lot-Sample#: E1J180000-278

 101
 (90 - 110)
 SW846 9040B
 10/18/01
 1291278

101 (90 - 110) SW846 9040B Analysis Time..: 11:59

NOTE(S):

MATRIX SPIKE SAMPLE DATA REPORT

TOTAL Metals

	SAMPLE	SPIKE	MEASURED		PERCNT				PREPARATION-	WORK
PARAMETER			AMOUNT	UNITS	RECVRY	RPD	METHOL)	ANALYSIS DATE	ORDER
MS Lot-Sa	mple #:	E1J170	0291-001	Prep Batch	#: 12	29118:	2			
Cadmium										
	ND	0.050	0.0497	mg/L	99		SW846	6010B	10/18-10/19/01	EMAXK
	ND	0.050	0.0481	mg/L	96	3.1	SW846	6010B	10/18-10/19/01	EMAXK
			Anal	ysis Time: 19	:26					
			MS R	ın #: 1 2	91063					
Chromium										
	ND	0.200	0.207	mg/L	103		SW846	6010B	10/18-10/19/01	EMAXK
	ND	0.200	0.202	mg/L	100	2.4	SW846	6010B	10/18-10/19/01	EMAXK
			Anal	ysis Time: 19	:26					
			MS R	ın #: 12	91063					
Copper										
	ND	0.250	0.277	mg/L	107		SW846	6010B	10/18-10/19/01	EMAXK
	ND	0.250	0.269	mg/L	104	3.0	SW846	6010B	10/18-10/19/01	EMAXK
			Anal	ysis Time: 19	:26					
			MS Ri	ın #: 12	91063					

MATRIX SPIKE SAMPLE DATA REPORT

GC/MS Volatiles

-	Client Lot #:	E1J180165	Work Order #:	EMCRP1AK-MS	Matrix:	WATER
	MS Lot-Sample #:	E1J180165-002		EMCRP1AL-MSD		
	Date Sampled:	10/17/01 14:45	Date Received:	10/18/01 09:20	MS Run #:	1293033
_	Prep Date:	10/20/01	Analysis Date:	10/20/01		
•	Pren Batch #	1293151	Analysis Time .	07:20		

	SAMPLE	SPIKE	MEASRD		PERCENT			
PARAMETER	AMOUNT	AMT	AMOUNT	UNITS	RECOVERY	RPD	METHOL)
Benzene	ND	10.0	10.3	ug/L	103		SW846	8260B
	ND	10.0	10.4	ug/L	104	0.67	SW846	8260B
Chlorobenzene	ND	10.0	10.2	ug/L	102		SW846	8260B
	ND	10.0	9.87	ug/L	99	3.8	SW846	8260B
1,1-Dichloroethene	ND	10.0	9.94	ug/L	99		SW846	8260B
	ND	10.0	10.3	ug/L	103	3.2	SW846	8260B
Toluene	ND	10.0	10.2	ug/L	102		SW846	8260B
	ND	10.0	10.1	ug/L	101	1.1	SW846	8260B
Trichloroethene	ND	10.0	10.7	ug/L	107		SW846	8260B
	ND	10.0	10.9	ug/L	109	2.3	SW846	8260B
			DEDCENT		DECOMEDY			

PERCENT	RECOVERY
RECOVERY	LIMITS
99	(75 - 120)
94	(75 - 120)
105	(65 - 130)
103	(65 - 130)
90	(80 - 130)
86	(80 - 130)
	RECOVERY 99 94 105 103 90

NOTE(S):

Calculations are performed before rounding to avoid round-off errors in calculated results.

MATRIX SPIKE SAMPLE EVALUATION REPORT

TOTAL Metals

Client Lot Date Sample			eceived.	.: 10/17/01 15:50	Matrix	: WATER
	PERCENT	RECOVERY	RPD		PREPARATION-	WORK
PARAMETER	RECOVERY	LIMITS RPD	LIMITS	METHOD	ANALYSIS DATE	ORDER #
MS Lot-Samp	le #: E1J17	0291-001 Prep B a	tch #	.: 1291182		
Cadmium	99	(80 - 120)		SW846 6010B	10/18-10/19/01	EMAXK1AK
	96	(80 - 120) 3.1	(0-20)	SW846 6010B	10/18-10/19/01	EMAXK1AL
		Analysis Time	: 19:26			
		MS Run #	: 12910	63		
Chromium	103	(85 - 120)		SW846 6010B	10/18-10/19/01	EMAXK1AM
	100	(85 - 120) 2.4	(0-20)	SW846 6010B	10/18-10/19/01	EMAXK1AN
		Analysis Time	: 19:26			
		MS Run #	: 12910	63		
Copper	107	(80 - 120)		SW846 6010B	10/18-10/19/01	EMAXK1AP
	104	(80 - 120) 3.0	(0-20)	SW846 6010B	10/18-10/19/01	EMAXK1AQ
		Analysis Time	: 19:26			
		MS Run #	: 129106	63		

NOTE (S) :

Calculations are performed before rounding to avoid round-off errors in calculated results.

MATRIX SPIKE SAMPLE EVALUATION REPORT

GC/MS Volatiles

Client Lot #: E MS Lot-Sample #: E		ork Order #	: EMCRP1AK		trix:	WATER
Date Sampled: 1		ate Received.			Run #:	1293033
Prep Date: 1	0/20/01 Ar	nalysis Date.	: 10/20/01			
Prep Batch #: 1	293151 Ar	nalysis Time.	: 07:20			
	PERCENT	RECOVERS	?	RPD		
PARAMETER	RECOVERY	Y LIMITS	RPD	LIMITS	METHOD	
Benzene	103	(75 - 12	20)		SW846 8260B	
	104	(75 - 12	20) 0.67	(0-25)	SW846 8260B	
Chlorobenzene	102	(80 - 12	20)		SW846 8260B	

(80 - 120)

(70 - 130)

(70 - 130)

(80 - 120)

(80 - 120)

(75 - 130)

3.8 (0-25)

(0-25)

(0-25)

(80 - 130)

3.2

1.1

SW846 8260B

SW846 8260B

SW846 8260B SW846 8260B

SW846 8260B

SW846 8260B

	109	(75 - 130)	2.3	(0-25)	SW846 8260B
		PERCENT		RECOVERY	
SURROGATE	_	RECOVERY		LIMITS	
Bromofluorobenzene		99		(75 - 12	0)
		94		(75 - 12	0)
1,2-Dichloroethane-d4		105		(65 - 13	0)
		103		(65 - 13	0)
Toluene-d8		90		(80 - 13	0)

86

99

99

103

102

101

107

NOTE(S):

Toluene

Calculations are performed before rounding to avoid round-off errors in calculated results.

Bold print denotes control parameters

1,1-Dichloroethene

Trichloroethene

SAMPLE DUPLICATE EVALUATION REPORT

General Chemistry

Client	t Lot #:	E1J180165	Work (Order	#: EM	CQ7-SMP Mat	trix:	WATER
Date S	Sampled:	10/17/01 15:3	35 Date 1	Receiv	ed: 10	/18/01 09:20		
% Mois	sture:		Dilut:	ion Fa	ctor:	Init	tial Wgt/Vol:	
		DUPLICATE			RPD		PREPARATION PREPAR	ON- PREP
PARAM	RESULT	RESULT	UNITS	RPD	LIMIT	METHOD	ANALYSIS I	DATE BATCH #
pН						SD Lot-Sample #	#: E1J180165-0	001
	7.5	7.4	No Units	0.24	(0-0.0)	SW846 9040B	10/18/01	1291278

Analysis Time..: 12:02 MS Run Number..: 1291180

Subcontract Reports

2852 Alton Ave., Irvine, CA 92606 (949) 261-1022 FAX (949) 261-1228
1014 E. Cooley Dr., Suite A, Colton, CA 92324 (909) 370-4667 FAX (909) 370-1046
7277 Hayvenhurst, Suite B-12, Van Nuys, CA 91406 (818) 779-1844 FAX (818) 779-1843
9484 Chesapeake Dr., Suite B-95, San Diego, CA 92123 (858) 505-8696 FAX (858) 505-869
9830 South 51st St., Suite B-120, Phoenix, AZ 85044 (480) 785-0043 FAX (480) 785-0851
2520 E. Sunset Rd. #3, Las Vegas, NV 89120 (702) 798-3620 FAX (702) 798-3621

LABORATORY REPORT

Prepared For: STL Los Angeles

1721 S. Grand Avenue Santa Ana, CA 92705

Attention: Diane Suzuki Project: E1J180165 Sampled: 10/17/01 Received: 10/18/01 Reported: 10/29/01

This laboratory report is confidential and is intended for the sole use of Del Mar Analytical and its client. This entire report was reviewed and approved for release.

CA ELAP Certificate #1197 AZ DHS License #AZ0428

Del Mar Analytical, Irvine Pat Abe

Project Manager

000042

2852 Alton Ave., Irvine, CA 92606 (949) 261-1022 FAX (949) 261-1228
1014 E. Cooley Dr., Suite A, Colton, CA 92324 (909) 370-4667 FAX (909) 370-1046
7277 Hayvenhurst, Suite B-12, Van Nuys, CA 91406 (818) 779-1844 FAX (818) 779-1843
9484 Chesapeake Dr., Suite 805, San Diego, CA 92123 (859) 505-8596 FAX (859) 505-9689
9830 South 51st St., Suite B-120, Phoenix, AZ 85044 (480) 785-0043 FAX (480) 785-0851

STL Los Angeles

Project ID: E1J180165

Sampled: 10/17/01

1721 S. Grand Avenue Santa Ana, CA 92705 Attention: Diane Suzuki

Report Number: IKJ0684

Received: 10/18/01

_			INOR	GANICS					
_	Analyte	Method	Batch	Reporting Limit	Sample Result	Dilution Factor	Date Extracted	Date Analyzed	Data Qualifiers
				mg/l	mg/l				
	Sample ID: IKJ0684-01 (PTI-MW4A-05	1 - Water)							
	Chromium VI	EPA 7199	I1J1833	0.0020	0.0077	1	10/18/01	10/18/01	
البيت	Sample ID: IKJ0684-02 (PTI-DI01-051 -	Water)							
	Chromium VI	EPA 7199	I1J1833	0.0020	ND	1	10/18/01	10/18/01	
	Sample ID: IKJ0684-03 (PTI-EB01-051	· Water)							
	Chromium VI	EPA 7199	I1J1833	0.0020	ND	1	10/18/01	10/18/01	

2852 Alton Ave., Irvine, CA 92606 (949) 261-1022 FAX (949) 261-1228
1014 E. Cooley Dr., Suite A, Colton, CA 92324 (909) 370-4667 FAX (909) 370-1046
7277 Hayvenhurst, Suite B-12, Van Nuys, CA 91406 (818) 779-1844 FAX (818) 779-1849
9484 Chesapeake Dr., Suite B-12, Van Nego, CA 92123 (858) 505-8596 FAX (858) 505-969
9830 South 51st St., Suite B-120, Phoenix, AZ 85044 (480) 785-0043 FAX (480) 785-0851
2520 E, Sunset Rd. #3, Las Vegas, NV 89120 (702) 798-3620 FAX (702) 798-3621

STL Los Angeles

Project ID: E1J180165

1721 S. Grand Avenue Santa Ana, CA 92705 Attention: Diane Suzuki

Report Number: IKJ0684

Sampled: 10/17/01 Received: 10/18/01

METHOD BLANK/QC DATA

INORGANICS

-	Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Data Qualifiers
	Batch: 11J1833 Extracted: 10/18/01	-									
•	Blank Analyzed: 10/18/01 (I1J1833-Chromium VI	BLK1) ND	0.0020	mg/l							
-	LCS Analyzed: 10/18/01 (I1J1833-E Chromium VI	0.0518	0.0020	mg/l	0.0500		104	90-110			
	Matrix Spike Analyzed: 10/18/01 (I Chromium VI	1 J1833-MS 0.0514	0.0020	mg/l	0.0500	Source: ND	IKJ0684 102	-03 70-130			
	Matrix Spike Dup Analyzed: 10/18/0 Chromium VI	0.0509	0.0020	mg/l	0.0500	Source:	IKJ0684 101	- 03 70-130	0.978	15	

Del Mar Analytical, Irvine Pat Abe

Project Manager

000044

2852 Alton Ave., Irvine, CA 92606 (949) 261-1022 FAX (949) 261-1228
1014 E. Cooley Dr., Suite A, Colton, CA 92324 (909) 370-4667 FAX (909) 370-1046
7277 Hayvenhurst, Suite B-12, Van Nuys, CA 91406 (818) 779-1844 FAX (818) 779-1843
9484 Chesapeake Dr., Suite B-95, San Diego, CA 92123 (858) 505-8596 FAX (858) 505-969
9830 South 51st St., Suite B-120, Phoenix, AZ 85044 (480) 785-0043 FAX (480) 785-0851
2520 E, Sunset Rd. #3, Las Vegas, NV 89120 (702) 798-3620 FAX (702) 798-3621

STL Los Angeles

Project ID: E1J180165

1721 S. Grand Avenue

Report Number: IKJ0684

Sampled: 10/17/01 Received: 10/18/01

Santa Ana, CA 92705 Attention: Diane Suzuki

DATA QUALIFIERS AND DEFINITIONS

ND Analyte NOT DETECTED at or above the reporting limit or MDL, if MDL is specified.

NR Not reported.

RPD Relative Percent Difference

Del Mar Analytical, Irvine

Pat Abe

Project Manager

000045

STL Los Angeles

1721 South Grand Avenue Santa Ana, CA 92705-4808

Tel: 714 258 8610 Fax: 714 258 0921 www.stl-inc.com

October 30, 2001

STL LOT NUMBER: E1J170291

NELAP Certification Number: 01118CA PO/CONTRACT: 2279-11462-111.FLD

Sharon Wallin Camp, Dresser, McKee 18881 Von Karman, Suite 650 Irvine, CA 92612

Dear Ms. Wallin,

This report contains the analytical results for the seven samples received under chain of custody by STL Los Angeles on October 17, 2001. These samples are associated with your PTI - Santa Fe Springs project.

All applicable quality control procedures met method-specified acceptance criteria except as noted on the following page. See Project Receipt Checklist for container temperature and conditions. Temperature reading between 2 to 6 degrees Celsius is considered within acceptable criteria. Any matrix related anomaly is footnoted within the report. The Hexavalent Chromium by 7199 analysis was performed by Del Mar Analytical. See attached report for any related anomaly.

STL Los Angeles certifies that the tests performed at our facility meet all NELAP requirements for parameters for which accreditation is required or available. The case narrative is an integral part of the report. This report shall not be reproduced except in full, without the written approval of the laboratory.

If you have any questions, please feel free to call me at (714) 258-8610 extension 309.

Sincerely,

Diane Suzuki Project Manager CC: Project File

Page 1 of 000057 total pages in this report.

LOT NUMBER E1J170291

Nonconformance 07-16600

Affected Samples:

E1J170291 (2): PTI-MW15D-051 E1J170291 (4): PTI-MW6D-051

Affected Methods:

8270C SIM, 1,4 Dioxane

Case Narrative:

Due to insufficient volume for MS/MSD, a LCS/DCS was prepared to measure accuracy of the batch.

	RECEIP	T CHEC	KL131			Date:	10/17	101		
Quantims Client Nan	Lot #:	E17	170	291		Quote	#: 29	756		
Client Nan	ne: DEC	19	R A	MACAN	CAC	Project	: Phil	notect	1	
Received b	v: 172	<i></i>		194	·	Date/T	ime Recei	ved: 10/	12/01	10
Delivered I	by :□Cli	ent	Airbo	orne	Fed Ex	Понь	. Multra	-Ex □Re	v B	/ 3-
		s			Other					• • • • • • • • • • • • • • • • • • • •
										Initial /
Custody S	eal Status	s: 🔲 Inta	ict	Broken		one	•••••	• • • • • • • • • • • • • • • • • • • •	/	1717
Custody S	eal #(s):_			_				No Seal #	••••••	
Custody So Sample Co Temperatu	ntainer(s)): ∐STL	-LA [Client	ຼຸ	Ά	• • • • • • • • • • • • • • • • • • • •	•••••	··· <u>·</u> ································	
Temperatu	re(s) (COC	LER/BLAN	vk) in °C	:	7 C		(CORREC	TED TEMPI	27,	
Thermome	ter Used	: ☑fA, (I)	nfra-red)	ĮĄ 📙	Digital (Pr	robe)	• • • • • • • • • • • • • • • • • • • •			
Thermome Samples:		Intac	= -5°C	-)	Broken	□Othe	r	•••		
Anomalies:		MNo			Yes (See	Clouseau				
Anomalies: Labeled by	HL	<u> T</u>				•••••		• • • • • • • • • • • • • • • • • • • •		
Labeling ch	ecked by		•••••		• • • • • • • • • • • • • • • • • • • •		•••••	•••		
• • • • • • • • • • •	••••									
Turn Aroun	d Time:[]RUSH-	-24HR	□RUSH-	-48HR [_RUSH-	72HR 🕝	NORMAL		
Chart Hold	Notificati	ion: MP	h Mw	et Chem	□Metal	s (Filter/P	res Ta	ncore 😡	N/A	
						•	.,		_	
		Toot/	ah/Da+a	CAMP () I I						
Outside An		(Test/La	ab/Date	Sent Out	(): (A)-					
		(Test/La	ab/Date 99 78	Sent Out	(): (a).					
		(Test/La :71 80	ab/Date 99 70 270 - 2	Sent Out SPH 19): 'ar. to WE	Stc				
		(Test/La '7/ 80	ab/Date 99 <i>To</i> 270 - 2	Sent Out Pel H SIH 1	1: 101. 10 WE	Stc.		- ·········· - ········		
		(Test/La '7/ 80	ab/Date 99 78 270 2	Sent Out Let M SI'M I): 'a1 . '> WE	Stc		_		
		(Test/Li :7/ 80	99 to	SI'H g	ar.			_ '		
Outside An	alysis(es)	71	99 to	SI'H g	OBLANK SP			_ '		
Outside An	alysis(es)	71 80 3	99 to	SI'H g	OBLANK SPA			_ '		
Fraction VOAh /*	/ ->	·71 8	99 to	SIH O	OBLANK SP			_ '		
Fraction VOAh /*	alysis(es)	·71 8	99 to	SIH O	OBLANK SPA			_ '		
Fraction VOAh /* 125ml PB	/ ->	·71 8	99 to	SIH O	OBLANK SPA			_ '		
Fraction VOAh /* 125m Pg 125m Pg 125m Pg	/ ->	3 3 1	99 to	Sel M 0	OBLANK SPA			_ '		
Fraction VOAh /* 125ml PB	/ ->	·71 8	99 to	SIH O	OBLANK SPA			_ '		
Fraction VOAh /* 125m Pg 125m Pg 125m Pg	/ ->	3 3 1	99 to	Sel M 0	OBLANK SPA			_ '		
Fraction VOAh /* 125m Pg 125m Pg 125m Pg	/ ->	3 3 1	99 to	Sel M 0	OBLANK SPA			_ '		
Fraction VOAh /* 125m Pg 125m Pg 125m Pg	/ ->	3 3 1	99 to	Sel M 0	OBLANK SPA			_ '		
Fraction VOAh /* 125m Pg 125m Pg 125m Pg	/ ->	3 3 1	99 to	Sel M 0	OBLANK SPA			_ '		
Fraction VOAh /* 125m Pg 125m Pg 125m Pg	/ ->	3 3 1	99 to	Sel M 0	OBLANK SPA			_ '		
Fraction VOAh /* 125m Pg 125m Pg 125m Pg	/ ->	3 3 1	99 to	Sel M 0	OBLANK SPA			_ '		
Fraction VOAh /* 125m Pg 125m Pg 125m Pg	/ ->	3 3 1	99 to	Sel M 0	OBLANK SPA			_ '		
Fraction VOAh /* 125 m PA 125 m PA 120 m PA	alysis(es)	3 3 /	99 to 270 2	Sel M 6 1 1 1 1 1 1 1 1 1	O BLANK SPA	ACES ; USE ?	UA ····			
Fraction VOAh /* /25 m Pg /25 m Pg /25 m Pg	alysis(es)	3	99 to 270 2	Sel M 6 1 1 1 1 1 1 1 1 1	O BLANK SPA	ACES ; USE ?	UA ************************************			
Fraction VOAh /* 125ml PB 125ml PB 125ml PB 125ml PB	/ -> 2 3 1 1 1 1 1 1 1 1 1	3 3 / / /	99 To 270 2	Sel M 6 1 1 1 1 1 1 1 1 1	O BLANK SPA	ACES ; USE ?	UA ····			

CHANGE ORDER

Lab Analysi	is No.	EIJ170291		
Client Nam	9	PTI		
Contact		John Benne	IL (e com
		•		
X	CANCEL W	ork		ADD Work
	Chain of Cu	stody Discrepancy		TAT Change
	Matrix			Sample Problem
	Tests Not D	efined		Other
		EXPLANATION/RESOLU	TION	
\mathcal{P}	T1-m (1)			i, 4 diovane by 8270
				-, , , , so y as a say so re
	· · · · · · · · · · · · · · · · · · ·			
				
			······································	
		<i>:</i>		
nitiated By:	Qi_		Receiv	red By:
	10/18/01		Dete/T	

Distribution:

on:
Original - Sample Control/Job Folder, Yellow Que, Qink - Initiator

ENS-3006

Analytical Report

000008

EXECUTIVE SUMMARY - Detection Highlights

E1J170291

PARAMETER	RESULT	REPORTING LIMIT	UNITS	ANALYTICAL METHOD
PTI-MW3-051 10/17/01 07:45 001				
Carbon tetrachloride	39	5.0	ug/L	SW846 8260
Chloroform	35	5.0	ug/L	SW846 8260
1,1-Dichloroethane	35	5.0	ug/L	SW846 8260
1,1-Dichloroethene	35	5.0	ug/L	SW846 8260
Tetrachloroethene	5.1	5.0	ug/L	SW846 8260
Trichloroethene	290	5.0	ug/L	SW846 8260
рн	7.1	0.10	No Units	SW846 9040
PTI-MW15D-051 10/17/01 09:15 002				
Benzene	2.2	1.0	ug/L	SW846 8260
Tetrachloroethene	2.4	1.0	ug/L	SW846 8260
Trichloroethene	6.7	1.0	ug/L	SW846 8260
рН	7.6	0.10	No Units	SW846 9040
PTI-MW15S-051 10/17/01 10:15 003				
Carbon tetrachloride	2.0	1.0	ug/L	SW846 8260
Chloroform	3.5	1.0	ug/L	SW846 8260
1,2-Dichloroethane	8.2	1.0	ug/L	SW846 8260
Tetrachloroethene	1.2	1.0	ug/L	SW846 8260
Trichloroethene	2.8	1.0	ug/L	SW846 8260
рН	7.5	0.10	No Units	SW846 9040
PTI-MW6D-051 10/17/01 11:25 004				
Tetrachloroethene	1.1	1.0	ug/L	SW846 8260
Trichloroethene	4.6	1.0	ug/L	SW846 8260
рН	7.6	0.10	No Units	SW846 9040
PTI-MW6B-051 10/17/01 12:25 005				
Trichloroethene	4.6	1.0	ug/L	SW846 8260
рН	7.5	0.10	No Units	SW846 9040
PTI-MW14S-051 10/17/01 14:30 006				
Chromium	0.14	0.010	mg/L	SW846 6010
Copper	0.042	0.025	mg/L	SW846 6010
Carbon tetrachloride	22	2.0	ug/L	SW846 82601
Chlorobenzene	2.3	2.0	ug/L	SW846 8260
Chloroform	23	2.0	ug/L	SW846 82601
1,1-Dichloroethane	56	2.0	ug/L	SW846 82601

(Continued on next page)

EXECUTIVE SUMMARY - Detection Highlights

E1J170291

PARAMETER	RESULT	REPORTING LIMIT	UNITS	ANALYTICAL METHOD
PTI-MW14S-051 10/17/01 14:30 006				
1,2-Dichloroethane	6.4	2.0	ug/L	SW846 8260B
1,1-Dichloroethene	39	2.0	ug/L	SW846 8260B
cis-1,2-Dichloroethene	5.2	2.0	ug/L	SW846 8260B
Ethylbenzene	2.4	2.0	ug/L	SW846 8260B
Tetrachloroethene	2.4	2.0	ug/L	SW846 8260B
Trichloroethene	170	2.0	ug/L	SW846 8260B
На	7.2	0.10	No Units	SW846 9040B

METHODS SUMMARY

E1J170291

PARAMETER	ANALYTICAL METHOD	PREPARATION METHOD
pH Aqueous	SW846 9040B	SW846 9040B
Inductively Coupled Plasma (ICP) Metals	SW846 6010B	SW846 3005A
Volatile Organics by GC/MS	SW846 8260B	SW846 5030B/826
8270C (SIM)	SW846 8270C SIN	1

References:

SW846 "Test Methods for Evaluating Solid Waste, Physical/Chemical Methods", Third Edition, November 1986 and its updates.

SAMPLE SUMMARY

E1J170291

				SAMPLED	SAMP
***	WO_#_	SAMPLE#	CLIENT SAMPLE ID	DATE	TIME
	EMAXK	001	PTI-MW3-051	10/17/01	07:45
	EMAXP	002	PTI-MW15D-051	10/17/01	09:15
-	EMAXQ	003	PTI-MW15S-051	10/17/01	10:15
	EMAXR	004	PTI-MW6D-051	10/17/01	11:25
	EMAXT	005	PTI-MW6B-051	10/17/01	12:25
	EMAXW	006	PTI-MW14S-051	10/17/01	14:30
	EMAX5	007	TRIP BLANK	10/17/01	

NOTE(S):

- The analytical results of the samples listed above are presented on the following pages.
- All calculations are performed before rounding to avoid round-off errors in calculated results.
- Results noted as "ND" were not detected at or above the stated limit.
- This report must not be reproduced, except in full, without the written approval of the laboratory.
- Results for the following parameters are never reported on a dry weight basis: color, corrosivity, density, flashpoint, ignitability, layers, odor, paint filter test, pH, porosity pressure, reactivity, redox potential, specific gravity, spot tests, solids, solubility, temperature, viscosity, and weight.

Client Sample ID: PTI-MW3-051

GC/MS Volatiles

Lot-Sample #: E1J170291-00 Date Sampled: 10/17/01 07: Prep Date: 10/20/01	:45 Date Received: Analysis Date:	10/17/01 :		rix WAT Run #: 129
Prep Batch #: 1293152	Analysis Time: Method		0B	
		REPORTING		
PARAMETER	RESULT	LIMIT	UNITS	MDL
Benzene	ND	5.0	ug/L	1.5
Bromodichloromethane	ND	5.0	ug/L	1.5
Bromoform	ND	5.0	ug/L	1.5
Bromomethane	ND	10	ug/L	5.0
Carbon tetrachloride	39	5.0	ug/L	1.5
Chlorobenzene	ND	5.0	ug/L	1.5
Dibromochloromethane	ND	5.0	ug/L	2.0
Chloroethane	ND	10	ug/L	1.5
Chloroform	35	5.0	ug/L	1.5
Chloromethane	ND	10	ug/L	1.5
1,2-Dichlorobenzene	ND	5.0	ug/L	1.5
1,3-Dichlorobenzene	ND	5.0	ug/L	1.5
1,4-Dichlorobenzene	ND	5.0	ug/L	1.5
1,1-Dichloroethane	35	5.0	ug/L	1.0
1,2-Dichloroethane	ND	5.0	ug/L	2.0
1,1-Dichloroethene	35	5.0	ug/L	1.5
cis-1,2-Dichloroethene	ND	5.0	ug/L	1.5
trans-1,2-Dichloroethene	ND	5.0	ug/L	1.5
1,2-Dichloropropane	ND	5.0	ug/L	1.5
cis-1,3-Dichloropropene	ND	5.0	ug/L	1.5
trans-1,3-Dichloropropene	ND	5.0	ug/L	2.5
Ethylbenzene	ND	5.0	ug/L	1.0
Methylene chloride	ND	5.0	ug/L	1.5
1,1,2,2-Tetrachloroethane	ND	5.0	ug/L	2.0
Tetrachloroethene	5.1	5.0	ug/L	1.5
Toluene	ND	5.0	ug/L	1.5
1,1,1-Trichloroethane	ND	5.0	ug/L	1.0
1,1,2-Trichloroethane	ND	5.0	ug/L	1.5
Trichloroethene	290	5.0	ug/L	1.5
Trichlorofluoromethane	ND	10	ug/L	1.5
Vinyl chloride	ND	10	ug/L	1.5
m-Xylene & p-Xylene	ND	5.0	ug/L	2.5
o-Xylene	ND	5.0	ug/L	1.0
	PERCENT	RECOVERY		
SURROGATE	RECOVERY	LIMITS	_	
Bromofluorobenzene	94	(75 - 120))	
1,2-Dichloroethane-d4	94	(65 - 130))	
Toluene-d8	98	(80 - 130))	

Client Sample ID: PTI-MW15D-051

GC/MS Semivolatiles

	Lot-Sample #: E1J170291-002 Date Sampled: 10/17/01 09:15 Prep Date: 10/19/01 Prep Batch #: 1292556		10/17/01 15 10/22/01 20:09	5:50 MS Run	: WATER #:
A CONTRACTOR OF THE CONTRACTOR	PARAMETER 1,4-Dioxane	RESULT ND			MDL 0.33
	SURROGATE 2-Fluorophenol Nitrobenzene-d5	PERCENT RECOVERY 60 75	RECOVERY LIMITS (30 - 120) (30 - 120)		

Client Sample ID: PTI-MW15D-051

GC/MS Volatiles

Lot-Sample #: E1J170291-002	Work Order #:	EMAXP1AA	Matrix	WATER
Date Sampled: 10/17/01 09:15	Date Received:	10/17/01	15:50 MS Run	# 12930
Prep Date: 10/20/01	Analysis Date:	10/20/01		
Prep Batch #: 1293152	Analysis Time:	03:32		
	Method:	SW846 826	0B	
		REPORTING		
PARAMETER	RESULT	LIMIT	UNITS	MDL
Benzene	2.2	1.0	ug/L	0.30
Bromodichloromethane	ND	1.0	ug/L	0.30
Bromoform	ND	1.0	ug/L	0.30
Bromomethane	ND	2.0	ug/L	1.0
Carbon tetrachloride	ND	1.0	ug/L	0.30
Chlorobenzene	ND	1.0	ug/L	0.30
Dibromochloromethane	ND	1.0	ug/L	0.40
Chloroethane	ND	2.0	ug/L	0.30
Chloroform	ND	1.0	ug/L	0.30
Chloromethane	ND	2.0	ug/L	0.30
1,2-Dichlorobenzene	ND	1.0	ug/L	0.30
1,3-Dichlorobenzene	ND	1.0	ug/L	0.30
1,4-Dichlorobenzene	ND	1.0	ug/L	0.30
1,1-Dichloroethane	ND	1.0	ug/L	0.20
1,2-Dichloroethane	ND	1.0	ug/L	0.40
1,1-Dichloroethene	ND	1.0	ug/L	0.30
cis-1,2-Dichloroethene	ND	1.0	ug/L	0.30
trans-1,2-Dichloroethene	ND	1.0	ug/L	0.30
1,2-Dichloropropane	ND	1.0	ug/L	0.30
cis-1,3-Dichloropropene	ND	1.0	ug/L	0.30
trans-1,3-Dichloropropene	ND	1.0	ug/L	0.50
Ethylbenzene	ND	1.0	ug/L	0.20
Methylene chloride	ND	1.0	ug/L	0.30
1,1,2,2-Tetrachloroethane	ND	1.0	ug/L	0.40
Tetrachloroethene	2.4	1.0	ug/L	0.30
Toluene	ND	1.0	ug/L	0.30
1,1,1-Trichloroethane	ND	1.0	ug/L	0.20
1,1,2-Trichloroethane	ND	1.0	ug/L	0.30
Trichloroethene	6.7	1.0	ug/L	0.30
Trichlorofluoromethane	ND	2.0	ug/L	0.30
Vinyl chloride	ND	2.0	ug/L	0.30
m-Xylene & p-Xylene	ND.	1.0	ug/L	0.50
o-Xylene	ND	1.0	ug/L	0.20
	PERCENT	RECOVERY		

LIMITS

(75 - 120) (65 - 130)

(80 - 130)

RECOVERY

95

95

SURROGATE

Toluene-d8

Bromofluorobenzene

1,2-Dichloroethane-d4

Client Sample ID: PTI-MW15S-051

GC/MS Volatiles

Date Sampled: 10/17/01 10 Prep Date: 10/20/01	Analysis Date	e: 10/20/01			
Prep Batch #: 1293152	Analysis Time		260B		
		REPORTI	1G		
PARAMETER	RESULT	LIMIT	UNITS	MDL	
Benzene	ND	1.0	ug/L	0.30	
Bromodichloromethane	ND	1.0	ug/L	0.30	
Bromoform	ND	1.0	$\mathtt{ug/L}$	0.30	
Bromomethane	ND	2.0	ug/L	1.0	
Carbon tetrachloride	2.0	1.0	ug/L	0.30	
Chlorobenzene	ND	1.0	ug/L	0.30	
Dibromochloromethane	ND	1.0	ug/L	0.40	
Chloroethane	ND	2.0	ug/L	0.30	
Chloroform	3.5	1.0	ug/L	0.30	
Chloromethane	ND	2.0	uq/L	0.30	
1,2-Dichlorobenzene	ND	1.0	ug/L	0.30	
1,3-Dichlorobenzene	ND	1.0	ug/L	0.30	
1,4-Dichlorobenzene	ND	1.0	ug/L	0.30	
1,1-Dichloroethane	ND	1.0	ug/L	0.20	
1,2-Dichloroethane	8.2	1.0	ug/L	0.40	
1,1-Dichloroethene	ND	1.0	ug/L	0.30	
cis-1,2-Dichloroethene	ND	1.0	ug/L	0.30	
trans-1,2-Dichloroethene	ND	1.0	ug/L	0.30	
1,2-Dichloropropane	ND	1.0	ug/L	0.30	
cis-1,3-Dichloropropene	ND	1.0	ug/L	0.30	
trans-1,3-Dichloropropene	ND	1.0	ug/L	0.50	
Ethylbenzene	ND	1.0	ug/L	0.20	
Methylene chloride	ND	1.0	ug/L	0.30	
1,1,2,2-Tetrachloroethane	ND	1.0	ug/L	0.40	
Tetrachloroethene	1.2	1.0	ug/L	0.30	
Toluene	ND '	1.0	ug/L	0.30	
1,1,1-Trichloroethane	ND	1.0	ug/L	0.20	
1,1,2-Trichloroethane	ND	1.0	ug/L	0.30	
Trichloroethene	2.8	1.0	ug/L	0.30	
Trichlorofluoromethane	ND	2.0	ug/L	0.30	
Vinyl chloride	ND	2.0	ug/L	0.30	
m-Xylene & p-Xylene	ND	1.0	ug/L	0.50	
o-Xylene	ND	1.0	ug/L	0.20	
	PERCENT	RECOVERY	•		
SURROGATE	RECOVERY	LIMITS			
Dwamafluanahanaana	O.F.	/75 12	(0)		

(75 - 120)

(65 - 130) (80 - 130)

95

96

95

Bromofluorobenzene

Toluene-d8

1,2-Dichloroethane-d4

Client Sample ID: PTI-MW6D-051

GC/MS Semivolatiles

Lot-Sample #: Date Sampled: Prep Date: Prep Batch #:	10/17/01 11:25 10/19/01	Work Order #: Date Received: Analysis Date: Analysis Time: Method	10/17/01 15 10/22/01 20:30	5:50 MS Run	: WATER #:
PARAMETER 1,4-Dioxane		RESULT ND	REPORTING LIMIT 0.95	UNITS ug/L	MDL 0.33
SURROGATE 2-Fluorophenol Nitrobenzene-d5		PERCENT RECOVERY 63 72	RECOVERY LIMITS (30 - 120) (30 - 120)		

Client Sample ID: PTI-MW6D-051

GC/MS Volatiles

Lot-Sample #: E1J170291-00				riж WA
Date Sampled: 10/17/01 11:	Analysis Date		15:50 MS 1	kun # 12
Prep Date: 10/20/01	Analysis Time:			
Prep Batch #: 1293152	Method			
	method:	SW846 828	aua	
		REPORTING	3	
PARAMETER	RESULT	LIMIT	UNITS	MDL
Benzene	ND	1.0	ug/L	0.30
Bromodichloromethane	ND	1.0	ug/L	0.30
Bromoform	ND	1.0	ug/L	0.30
Bromomethane	ND	2.0	ug/L	1.0
Carbon tetrachloride	ND	1.0	ug/L	0.30
Chlorobenzene	ND	1.0	ug/L	0.30
Dibromochloromethane	ND	1.0	ug/L	0.40
Chloroethane	ND	2.0	ug/L	0.30
Chloroform	ND	1.0	ug/L	0.30
Chloromethane	ND	2.0	ug/L	0.30
1,2-Dichlorobenzene	ND	1.0	ug/L	0.30
1,3-Dichlorobenzene	ND	1.0	ug/L	0.30
1,4-Dichlorobenzene	ND	1.0	ug/L	0.30
1,1-Dichloroethane	ND	1.0	ug/L	0.20
1,2-Dichloroethane	ND	1.0	ug/L	0.40
1,1-Dichloroethene	ND	1.0	ug/L	0.30
cis-1,2-Dichloroethene	ND	1.0	ug/L	0.30
trans-1,2-Dichloroethene	ND	1.0	ug/L	0.30
1,2-Dichloropropane	ND	1.0	ug/L	0.30
cis-1,3-Dichloropropene	ND	1.0	ug/L	0.30
trans-1,3-Dichloropropene	ND	1.0	ug/L	0.50
Ethylbenzene	ND	1.0	ug/L	0.20
Methylene chloride	ND	1.0	ug/L	0.30
1,1,2,2-Tetrachloroethane	ND	1.0	ug/L	0.40
Tetrachloroethene	1.1	1.0	ug/L	0.30
Toluene	ND	1.0	ug/L	0.30
1,1,1-Trichloroethane	ND	1.0	ug/L	0.20
1,1,2-Trichloroethane	ND	1.0	ug/L	0.30
Trichloroethene	4.6	1.0	ug/L	0.30
Trichlorofluoromethane	ND	2.0	ug/L	0.30
Vinyl chloride	ND	2.0	ug/L	0.30
m-Xylene & p-Xylene	ND	1.0	ug/L	0.50
o-Xylene	ND	1.0	ug/L	0.20
O-vy rene	1410	1.0	ug/ n	0.20
	PERCENT	RECOVERY		
SURROGATE	RECOVERY	LIMITS		
Bromofluorobenzene	98	(75 - 1 20	1)	
1,2-Dichloroethane-d4	96	(65 - 130))	
Toluene-d8	99 .	(80 - 1 30	1)	

Client Sample ID: PTI-MW6B-051

GC/MS Volatiles

	Analysis Time: Method:		50B	
		REPORTING	3	
PARAMETER	RESULT	LIMIT	UNITS	MDL
Benzene	ND	1.0	ug/L	0.30
Bromodichloromethane	ND	1.0	ug/L	0.30
Bromoform	ND	1.0	ug/L	0.30
Bromomethane	ND	2.0	ug/L	1.0
Carbon tetrachloride	ND	1.0	ug/L	0.30
Chlorobenzene	ND	1.0	ug/L	0.30
Dibromochloromethane	ND	1.0	ug/L	0.40
Chloroethane	ND	2.0	ug/L	0.30
Chloroform	ND	1.0	ug/L	0.30
Chloromethane	ND	2.0	ug/L	0.30
1,2-Dichlorobenzene	ND	1.0	ug/L	0.30
1,3-Dichlorobenzene	ND	1.0	ug/L	0.30
1,4-Dichlorobenzene	ND	1.0	ug/L	0.30
1,1-Dichloroethane	ND	1.0	ug/L	0.20
1,2-Dichloroethane	ND	1.0	ug/L	0.40
1,1-Dichloroethene	ND	1.0	ug/L	0.30
cis-1,2-Dichloroethene	ND	1.0	ug/L	0.30
trans-1,2-Dichloroethene	ND	1.0	ug/L	0.30
1,2-Dichloropropane	ND	1.0	ug/L	0.30
cis-1,3-Dichloropropene	ND	1.0	ug/L	0.30
trans-1,3-Dichloropropene	ND	1.0	ug/L	0.50
Ethylbenzene	ND	1.0	ug/L	0.20
Methylene chloride	ND	1.0	ug/L	0.30
1,1,2,2-Tetrachloroethane	ND	1.0	ug/L	0.40
Tetrachloroethene	ND	1.0	ug/L	0.30
Toluene	ND	1.0	ug/L	0.30
1,1,1-Trichloroethane	ND	1.0	ug/L	0.20
1,1,2-Trichloroethane	ND	1.0	ug/L	0.30
Trichloroethene	4.6	1.0	ug/L	0.30
Trichlorofluoromethane	ND	2.0	ug/L	0.30
Vinyl chloride	ND	2.0	ug/L	0.30
m-Xylene & p-Xylene	ND	1.0	ug/L	0.50
o-Xylene	ND	1.0	ug/L	0.20
	PERCENT	RECOVERY		
SURROGATE	RECOVERY	LIMITS (75 - 120	and the second second	

(80 - 130)

97

Client Sample ID: PTI-MW14S-051

GC/MS Volatiles

Lot-Sample #: E1J170291-006				rix WATE		
Date Sampled: 10/17/01 14:3	O Date Received:	10/17/01	L5:50 MS	Run # 1293		
Prep Date: 10/20/01	Analysis Date:	10/20/01				
Prep Batch #: 1293152	Analysis Time:	05:01				
	Method:					
		REPORTING				
PARAMETER	RESULT	LIMIT	UNITS	MDL		
Benzene	ND	2.0	ug/L	0.60		
Bromodichloromethane	ND	2.0	ug/L	0.60		
Bromoform	ND	2.0	ug/L	0.60		
Bromomethane	ND	4.0	ug/L	2.0		
Carbon tetrachloride	22	2.0	ug/L	0.60		
Chlorobenzene	2.3	2.0	ug/L	0.60		
Dibromochloromethane	ND	2.0	ug/L	0.80		
Chloroethane	ND	4.0	ug/L	0.60		
Chloroform	23	2.0	ug/L	0.60		
Chloromethane	ND	4.0	ug/L	0.60		
1,2-Dichlorobenzene	ND	2.0	ug/L	0.60		
1,3-Dichlorobenzene	ND	2.0	ug/L	0.60		
1,4-Dichlorobenzene	ND	2.0	ug/L	0.60		
1,1-Dichloroethane	56	2.0	ug/L	0.40		
1,2-Dichloroethane	6.4	2.0	ug/L	0.80		
1,1-Dichloroethene	39	2.0	ug/L	0.60		
cis-1,2-Dichloroethene	5.2	2.0	ug/L	0.60		
trans-1,2-Dichloroethene	ND	2.0	ug/L	0.60		
1,2-Dichloropropane	ND	2.0	ug/L	0.60		
cis-1,3-Dichloropropene	ND	2.0	ug/L	0.60		
trans-1,3-Dichloropropene	ND	2.0	ug/L	1.0		
Ethylbenzene	2.4	2.0	ug/L	0.40		
Methylene chloride	ND	2.0	ug/L	0.60		
1,1,2,2-Tetrachloroethane	ND	2.0	ug/L	0.80		
Tetrachloroethene	2.4	2.0	ug/L	0.60		
Toluene	ND	2.0	ug/L	0.60		
1,1,1-Trichloroethane	ND	2.0	ug/L	0.40		
1,1,2-Trichloroethane	ND	2.0	ug/L	0.60		
Trichloroethene	170	2.0	ug/L	0.60		
Trichlorofluoromethane	ND	4.0	ug/L	0.60		
Vinyl chloride	ND	4.0	ug/L	0.60		
m-Xylene & p-Xylene	ND	2.0	ug/L	1.0		
o-Xylene	ND	2.0	ug/L	0.40		
	PERCENT	RECOVERY				
SURROGATE	RECOVERY	LIMITS	_			
Bromofluorobenzene	96	(75 - 120)				
1,2-Dichloroethane-d4	95	(65 - 130)				
Toluene-d8	94	(80 - 130				

Client Sample ID: TRIP BLANK

GC/MS Volatiles

Lot-Sample #: E1J170291-007 Date Sampled: 10/17/01 Prep Date: 10/19/01 Prep Batch #: 1293152	Work Order #: Date Received: Analysis Date: Analysis Time: Method	10/17/01 3 10/19/01 21:35	15:50 MS Run	: WATER .#: 1293032
	DD0111 #	REPORTING	IDITEC	MDI
PARAMETER	RESULT	LIMIT	UNITS	MDL
Benzene	ND	1.0	ug/L	0.30
Bromodichloromethane	ND	1.0	ug/L	0.30
Bromoform	ND	1.0	ug/L	
Bromomethane	ND	2.0	ug/L	1.0
Carbon tetrachloride	ND	1.0	ug/L	0.30
Chlorobenzene	ND	1.0	ug/L	0.30
Dibromochloromethane	ND	1.0	ug/L	0.40
Chloroethane	ND	2.0	ug/L	0.30
Chloroform	ND	1.0	ug/L	0.30
Chloromethane	ND	2.0	ug/L	0.30
1,2-Dichlorobenzene	ND	1.0	ug/L	0.30
1,3-Dichlorobenzene	ND	1.0	ug/L	0.30
1,4-Dichlorobenzene	ND	1.0	ug/L	0.30
1,1-Dichloroethane	ND	1.0	ug/L	0.20
1,2-Dichloroethane	ND	1.0	ug/L	0.40
1,1-Dichloroethene	ND	1.0	ug/L	0.30
cis-1,2-Dichloroethene	ND	1.0	ug/L	0.30
trans-1,2-Dichloroethene	ND	1.0	ug/L	0.30
1,2-Dichloropropane	ND	1.0	ug/L	0.30
cis-1,3-Dichloropropene	ND	1.0	ug/L	0.30
trans-1,3-Dichloropropene	ND	1.0	ug/L	0.50
Ethylbenzene	ND	1.0	ug/L	0.20
Methylene chloride	ND	1.0	ug/L	0.30
1,1,2,2-Tetrachloroethane	ND	1.0	ug/L	0.40
Tetrachloroeth e ne	ND	1.0	ug/L	0.30
Toluene	ND	1.0	ug/L	0.30
1,1,1-Trichloroethane	ND	1.0	ug/L	0.20
1,1,2-Trichloroethane	ND	1.0	ug/L	0.30
Trichloroethene	ND	1.0	ug/L	0.30
Trichlorofluoromethane	ND	2.0	ug/L	0.30
Vinyl chloride	ND	2.0	ug/L	0.30
m-Xylene & p-Xylene	ND	1.0	ug/L	0.50
o-Xylene	ND	1.0	ug/L	0.20
SURROGATE	PERCENT RECOVERY	RECOVERY LIMITS	_	
Bromofluorobenzene	92	(75 - 120))	
1,2-Dichloroethane-d4	90	(65 - 130)		
Toluene-d8	95	(80 - 130)		

Client Sample ID: PTI-MW3-051

General Chemistry

Lot-Sample #:	E1J170291-001	Work Order #: EMAXK	Matrix: WATER

Date Sampled...: 10/17/01 07:45 Date Received..: 10/17/01 15:50

 PARAMETER
 RESULT
 RL
 UNITS
 METHOD
 ANALYSIS DATE
 BATCH #

 pH
 7.1
 0.10
 No Units
 SW846 9040B
 10/17/01
 1290527

Analysis Time..: 17:12 MS Run #.....: 1290278 MDL.....

Client Sample ID: PTI-MW15D-051

General Chemistry

Lot-Sample #:	E1J170291-002	Work Order #:	EMAXP	Matrix WATER

Date Sampled...: 10/17/01 09:15 Date Received..: 10/17/01 15:50

 PARAMETER
 RESULT
 RL
 UNITS
 METHOD
 ANALYSIS DATE
 BATCH #

 pH
 7.6
 0.10
 No Units
 SW846 9040B
 10/17/01
 1290527

Client Sample ID: PTI-MW15S-051

General Chemistry

Lot-Sample #:	E1J170291-003	Work Order #: EMAXQ	Matrix: WATER
Data Campled .	10/17/01 10.15	Date Received . 10/17/01 19	

Date Sampled...: 10/17/01 10:15 Date Received..: 10/17/01 15:50

PARAMETER RESULT RL UNITS METHOD ANALYSIS DATE BATCH #
PARAMETER RESULT RL UNITS METHOD ANALYSIS DATE BATCH #

Analysis Time..: 17:21 MS Run #.....: 1290278 MDL.....

Client Sample ID: PTI-MW6D-051

General Chemistry

Lot-Sample #...: E1J170291-004 Work Order #...: EMAXR
Date Sampled...: 10/17/01 11:25 Date Received..: 10/17/01 15:50 Matrix....: WATER

PREPARATION-PREP RL UNITS METHOD ANALYSIS DATE BATCH # PARAMETER RESULT 7.6 0.10 No Units SW846 9040B 10/17/01 1290527 pH

Analysis Time..: 17:25 MS Run #.....: 1290278 MDL.....

Client Sample ID: PTI-MW6B-051

General Chemistry

Lot-Sample #...: E1J170291-005 Work Order #...: EMAXT Matrix.....: WATER Date Sampled...: 10/17/01 12:25 Date Received..: 10/17/01 15:50

PREPARATION- PREP RL UNITS METHOD ANALYSIS DATE BATCH # RESULT PARAMETER 7.5 0.10 No Units SW846 9040B 10/17/01 1290527

Analysis Time..: 17:28 MS Run #.....: 1290278 MDL.....

Client Sample ID: PTI-MW14S-051

General Chemistry

Lot-Sample #:	E1J170291-006	Work Order	# :	EMAXW	Matrix:	WATER
			_			

Date Sampled...: 10/17/01 14:30 Date Received..: 10/17/01 15:50

pH	7.2	0.10	No Units	SW846 9040B	10/17/01	1290527
PARAMETER	RESULT	RL	UNITS	METHOD	ANALYSIS DATE	BATCH #
					PREPARATION-	PREP

Analysis Time..: 17:31 MS Run #.....: 1290278 MDL.....:

Client Sample ID: PTI-MW3-051

TOTAL Metals

Lot-Sample #...: E1J170291-001 Matrix....: WATER

Date Sampled...: 10/17/01 07:45 Date Received..: 10/17/01 15:50

PARAMETER	RESULT	REPORTING LIMIT UNITS	METHOD	PREPARATION- WORK ANALYSIS DATE ORDER #
Prep Batch #.	: 1291182			
Cadmium	ND	0.0050 mg/L	SW846 6010B	10/18-10/19/01 EMAXK1AC
		Analysis Time: 18:56	MS Run #:	1291063 MDL 0.00060
Chromium	ND	0.010 mg/L	SW846 6010B	10/18-10/19/01 EMAXK1AD
		Analysis Time: 18:56	MS Run #:	1291063 MDL 0.0010
Copper	ND	0.025 mg/L	SW846 6010B	10/18-10/19/01 EMAXK1AE
		Analysis Time: 18:56	MS Run #:	1291063 MDL 0.0040

Client Sample ID: PTI-MW15D-051

TOTAL Metals

Lot-Sample #...: E1J170291-002 Matrix....: WATER

Date Sampled...: 10/17/01 09:15 Date Received..: 10/17/01 15:50

PARAMETER	RESULT	REPORTING LIMIT	UNITS	METHOD	PREPARATION- WORK ANALYSIS DATE ORDER #
Prep Batch #	: 1291182				
Cadmium	ND	0.0050	mg/L	SW846 6010B	10/18-10/19/01 EMAXP1AC
		Analysis Time.	.: 19:43	MS Run #:	1291063 MDL 0.00060
Chromium	ND	0.010	mg/L	SW846 6010B	10/18-10/19/01 EMAXP1AD
		Analysis Time.	.: 19:43	MS Run #:	1291063 MDL 0.0010
Copper	ND	0.025	mg/L	SW846 6010B	10/18-10/19/01 EMAXP1AE
		Analysis Time.	.: 19:43	MS Run #:	1291063 MDL 0.0040

Client Sample ID: PTI-MW15S-051

TOTAL Metals

Lot-Sample #...: E1J170291-003 Matrix....: WATER

Date Sampled...: 10/17/01 10:15 Date Received..: 10/17/01 15:50

PARAMETER	RESULT	REPORTING LIMIT	UNITS	METHOD	PREPARATION- ANALYSIS DATE	WORK ORDER #
Prep Batch #	: 1291182					
Cadmium	ND	0.0050	mg/L	SW846 6010B	10/18-10/19/01	EMAXQ1AC
		Analysis Time.	.: 19:52	MS Run #: 12910	063 MDL	: 0.00060
Chromium	ND	0.010	mg/L	SW846 6010B	10/18-10/19/01	EMAXQ1AD
		Analysis Time.	.: 19:52	MS Run #: 12910	063 MDL	: 0.0010
Copper	ND	0.025	mg/L	SW846 6010B	10/18-10/19/01	EMAXQ1AE
		Analysis Time.	.: 19:52	MS Run #: 12910	063 MDL	: 0.0040

Client Sample ID: PTI-MW6D-051

TOTAL Metals

Lot-Sample #...: E1J170291-004 Matrix....: WATER

Date Sampled...: 10/17/01 11:25 Date Received..: 10/17/01 15:50

REPORTING LIMIT UNITS	METHOD	PREPARATION- WORK ANALYSIS DATE ORDER #
0.0050 mg/L	SW846 6010B	10/18-10/19/01 EMAXR1AC
Analysis Time: 20:00	MS Run #: 1291	MDL 0.00060
0.010 mg/L	SW846 6010B	10/18-10/19/01 EMAXR1AD
Analysis Time: 20:00	MS Run #: 1291	1063 MDL 0.0010
0.025 mg/L	SW846 6010B	10/18-10/19/01 EMAXR1AE
	LIMIT UNITS 0.0050 mg/L Analysis Time: 20:00 0.010 mg/L Analysis Time: 20:00	LIMIT UNITS METHOD 0.0050 mg/L SW846 6010B Analysis Time: 20:00 MS Run #: 1291 0.010 mg/L SW846 6010B Analysis Time: 20:00 MS Run #: 1291 0.025 mg/L SW846 6010B

Client Sample ID: PTI-MW6B-051

TOTAL Metals

Lot-Sample #...: E1J170291-005 Matrix....: WATER

Date Sampled...: 10/17/01 12:25 Date Received..: 10/17/01 15:50

		REPORTING			PREPARATION-	WORK
PARAMETER	RESULT	LIMIT	UNITS	METHOD	ANALYSIS DATE	ORDER #
Prep Batch #	: 1291182					
Cadmium	ND	0.0050	mg/L	SW846 6010B	10/18-10/19/01	EMAXT1AC
		Analysis Time	.: 20:08	MS Run #: 12910	63 MDL	.: 0.00060
Chromium	ND	0.010	mg/L	SW846 6010B	10/18-10/19/01	EMAXT1AD
		Analysis Time	.: 20:08	MS Run #: 12910	63 MDL	.: 0.0010
Copper	ND	0.025	mg/L	SW846 6010B	10/18-10/19/01	EMAXT1AE
		Analysis Time	.: 20:08	MS Run #: 12910	63 MDL	: 0.0040

Client Sample ID: PTI-MW14S-051

TOTAL Metals

Lot-Sample #...: E1J170291-006 Matrix....: WATER

Date Sampled...: 10/17/01 14:30 Date Received..: 10/17/01 15:50

PARAMETER	RESULT	REPORTING LIMIT UNITS	METHOD	PREPARATION- WORK ANALYSIS DATE ORDER #
Prep Batch #	.: 1291182			
Cadmium	ND	0.0050 mg/L	SW846 6010B	10/18-10/19/01 EMAXW1AC
		Analysis Time: 20:17	MS Run #: 12910	063 MDL 0.00060
Chromium	0.14	0.010 mg/L	SW846 6010B	10/18-10/19/01 EMAXW1AD
		Analysis Time: 20:17	MS Run #: 12910	063 MDL 0.0010
Copper	0.042	0.025 mg/L Analysis Time: 20:17	SW846 6010B	10/18-10/19/01 EMAXWIAE

QA/QC

QC DATA ASSOCIATION SUMMARY

B1J170291

Sample Preparation and Analysis Control Numbers

		ANALYTICAL			LEACH	PREP	
SAMPLE#	MATRIX	METHOL)		BATCH #	BATCH #	MS_RUN#
001	WATER	SW846	9040B			1290527	1290278
	WATER	SW846	8260B			1293152	1293032
	WATER	SW846	6010B			1291182	1291063
002	WATER	SW846	8270C	SIM		1292556	
	WATER	SW846	9040B			1290527	1290278
	WATER	SW846	8260B			1293152	1293032
	WATER	SW846	6010B			1291182	1291063
003	WATER	SW846	9040B			1290527	1290278
	WATER	SW846	8260B			1293152	1293032
	WATER	SW846	6010B			1291182	1291063
004	WATER	SW846	8270C	SIM		1292556	
	WATER	SW846	9040B			1290527	1290278
	WATER	SW846	8260B			1293152	1293032
	WATER	SW846	6010B			1291182	1291063
005	WATER	SW846	9040B			1290527	1290278
	WATER	SW846	8260B			1293152	1293032
	WATER	SW846	6010B			1291182	1291063
006	WATER	SW846				1290527	1290278
	WATER	SW846	8260B			1293152	1293032
	WATER	SW846	6010B		•	1291182	1291063
007	WATER	SW846	8260B			1293152	1293032

METHOD BLANK REPORT

GC/MS Semivolatiles

Client Lot #...: E1J170291

MB Lot-Sample #: G1J190000-556

Work Order #...: EMG681AA

Matrix....: WATER

Prep Date....: 10/19/01

Analysis Time..: 18:25

Analysis Date..: 10/22/01

Prep Batch #...: 1292556

REPORTING

PARAMETER RESULT LIMIT UNITS METHOD 1,4-Dioxane 1.0 ug/L SW846 8270C SIM

RECOVERY PERCENT SURROGATE RECOVERY LIMITS 2-Fluorophenol 78 (30 - 120)(30 - 120)Nitrobenzene-d5 86

NOTE(S):

Calculations are performed before rounding to avoid round-off errors in calculated results.

METHOD BLANK REPORT

GC/MS Volatiles

Client Lot #...: E1J170291 Work Order #...: EMHXQ1AA Matrix.....: WATER

MB Lot-Sample #: E1J200000-152

Prep Date....: 10/19/01 Analysis Time..: 21:05

Analysis Date..: 10/19/01 **Prep Batch #...:** 1293152

		REPORTI	NG	
PARAMETER	RESULT	LIMIT	UNITS	METHOD
Benzene	ND	1.0	ug/L	SW846 8260B
Bromodichloromethane	ND	1.0	ug/L	SW846 8260B
Bromoform	ND	1.0	ug/L	SW846 8260B
Bromomethane	ND	2.0	ug/L	SW846 8260B
Carbon tetrachloride	ND	1.0	ug/L	SW846 8260B
Chlorobenzene	ND	1.0	ug/L	SW846 8260B
Dibromochloromethane	ND	1.0	ug/L	SW846 8260B
Chloroethane	ND	2.0	ug/L	SW846 8260B
Chloroform	ND	1.0	ug/L	SW846 8260B
Chloromethane	ND	2.0	ug/L	SW846 8260B
1,2-Dichlorobenzene	ND	1.0	ug/L	SW846 8260B
1,3-Dichlorobenzene	ND	1.0	ug/L	SW846 8260B
1,4-Dichlorobenzene	ND	1.0	ug/L	SW846 8260B
1,1-Dichloroethane	ND	1.0	ug/L	SW846 8260B
1,2-Dichloroethane	ND	1.0	ug/L	SW846 8260B
1,1-Dichloroethene	ND	1.0	ug/L	SW846 8260B
cis-1,2-Dichloroethene	ND	1.0	ug/L	SW846 8260B
trans-1,2-Dichloroethene	ND	1.0	ug/L	SW846 8260B
1,2-Dichloropropane	ND	1.0	ug/L	SW846 8260B
cis-1,3-Dichloropropene	ND	1.0	ug/L	SW846 8260B
trans-1,3-Dichloropropene	ND	1.0	ug/L	SW846 8260B
Ethylbenzene	ND	1.0	ug/L	SW846 8260B
Methylene chloride	ND	1.0	ug/L	SW846 8260B
1,1,2,2-Tetrachloroethane	ND	1.0	ug/L	SW846 8260B
Tetrachloroethene	ND	1.0	ug/L	SW846 8260B
Toluene	ND	1.0	ug/L	SW846 8260B
1,1,1-Trichloroethane	ND	1.0	ug/L	SW846 8260B
1,1,2-Trichloroethane	ND	1.0	ug/L	SW846 8260B
Trichloroethene	ND	1.0	ug/L	SW846 8260B
Trichlorofluoromethane	ND	2.0	ug/L	SW846 8260B
Vinyl chloride	ND	2.0	ug/L	SW846 8260B
m-Xylene & p-Xylene	ND	1.0	ug/L	SW846 8260B
o-Xylene	ND	1.0	ug/L	SW846 8260B
	PERCENT	RECOVER	Y	
SURROGATE	RECOVERY	LIMITS		
Bromofluorobenzene	97	(75 - 1	20)	
1,2-Dichloroethane-d4	96	(65 - 1	30)	
Toluene-d8	96	(80 - 1		

NOTE(S):

Calculations are performed before rounding to avoid round-off errors in calculated results.

METHOD BLANK REPORT

TOTAL Metals

Client Lot #: E1J170291	Matrix: WATER

PARAMETER	RESULT	REPORTING LIMIT	UNITS	METHOD		WORK ORDER #
MB Lot-Sampl	e #: E1J18000	0-182 Prep Ba	tch #:	1291182		
Cadmium	ND	0.0050	mg/L	SW846 6010B	10/18-10/19/01	EMCH11AA
		Analysis Time.	.: 18:30			
Chromium	ND	0.010	mg/L	SW846 6010B	10/18-10/19/01	EMCH11AC
		Analysis Time.	.: 18:30			
Copper	ND	0.025	mg/L	SW846 6010B	10/18-10/19/01	EMCH11AD
FF		Analysis Time.	.: 18:30		, , ,	

Calculations are performed before rounding to avoid round-off errors in calculated results.

GC/MS Semivolatiles

Client Lot #...: E1J170291 Work Order #...: EMG681AC-LCS Matrix....: WATER

LCS Lot-Sample#: G1J190000-556 EMG681AD-LCSD

 Prep Date.....: 10/19/01
 Analysis Date...: 10/22/01

 Prep Batch #...: 1292556
 Analysis Time...: 18:46

PERCENT SPIKE MEASURED PARAMETER AMOUNT AMOUNT UNITS RECOVERY RPD METHOD 1,4-Dioxane 10.0 4.32 ug/L 43 SW846 8270C SIM 10.0 4.57 ug/L 46 5.6 SW846 8270C SIM PERCENT RECOVERY SURROGATE RECOVERY LIMITS (30 - 120)77 2-Fluorophenol (30 - 120) 75 (30 - 120)Nitrobenzene-d5 84 88 (30 - 120)

NOTE(S):

Calculations are performed before rounding to avoid round-off errors in calculated results.

GC/MS Semivolatiles

Client Lot #: E1J170291	Work Order #: EMG681AC-LCS	Matrix WATER
-------------------------	----------------------------	--------------

LCS Lot-Sample#: G1J190000-556 EMG681AD-LCSD

 Prep Date.....: 10/19/01
 Analysis Date..: 10/22/01

 Prep Batch #...: 1292556
 Analysis Time..: 18:46

	PERCENT	RECOVERY	RPD	
PARAMETER	RECOVERY	LIMITS RPD	LIMITS	METHOD
1,4-Dioxane	43	(30 - 120)		SW846 8270C SIM
	46	(30 - 120) 5.6	(0-35)	SW846 8270C SIM

	PERCENT	RECOVERY
SURROGATE	RECOVERY	LIMITS
2-Fluorophenol	77	(30 - 120)
	75	(30 - 120)
Nitrobenzene-d5	84	(30 - 120)
	88	(30 - 120)

NOTE(S):

Calculations are performed before rounding to avoid round-off errors in calculated results.

GC/MS Volatiles

Client Lot #...: E1J170291 Work Order #...: EMHXQ1AC Matrix..... WATER

LCS Lot-Sample#: E1J200000-152

 Prep Date....: 10/19/01
 Analysis Date..: 10/19/01

 Prep Batch #...: 1293152
 Analysis Time..: 20:36

	SPIKE	MEASURED		PERCENT	
PARAMETER	AMOUNT	AMOUNT	UNITS	RECOVERY	METHOD
Benzene	10.0	10.0	ug/L	100	SW846 8260B
Chlorobenzene	10.0	9.79	ug/L	98	SW846 8260B
1,1-Dichloroethene	10.0	9.63	ug/L	96	SW846 8260B
Toluene	10.0	9.62	ug/L	96	SW846 8260B
Trichloroethene	10.0	10.2	ug/L	102	SW846 8260B

	PERCENT	RECOVERY
SURROGATE	RECOVERY	LIMITS
Bromofluorobenzene	99	(75 - 120)
1,2-Dichloroethane-d4	93	(65 - 130)
Toluene-d8	100	(80 - 130)

NOTE(S):

Calculations are performed before rounding to avoid round-off errors in calculated results.

General Chemistry

Client Lot #...: E1J170291 Matrix....: WATER

 SPIKE MEASURED
 PERCNT
 PREPARATION - PREP

 PARAMETER
 AMOUNT
 UNITS
 RECVRY METHOD
 ANALYSIS DATE
 BATCH #

 pH
 Work Order #: EMA2T1AA
 LCS Lot-Sample#: E1J170000-527
 100/17/01
 1290527

Analysis Time..: 17:09

NOTE(S):

Calculations are performed before rounding to avoid round-off errors in calculated results.

TOTAL Metals

Client Lot #: E1J170291 Matrix:						WATER		
PARAMETER	SPIKE AMOUNT	MEASURI AMOUNT	ED UNITS	PERCNT RECVRY		D	PREPARATION- ANALYSIS DATE	WORK ORDER #
LCS Lot-Sam	ple#: E13	180000-	182 Prep Ba	tch #	: 1291	182		
Cadmium	0.0500	0.0487	mg/L	97	SW846	6010B	10/18-10/19/01	EMCH11AE
			Analysis Time.	.: 18:36				
Chromium	0.200	0.201		100	SW846	6010B	10/18-10/19/01	EMCH11AF
			Analysis Time.	.: 18:36				
Copper	0.250	0.240	mg/L	96	SW846	6010B	10/18-10/19/01	EMCH11AG
			Analysis Time.	.: 18:36				
NOTE(S):								

Calculations are performed before rounding to avoid round-off errors in calculated results.

GC/MS Volatiles

Client Lot #...: E1J170291 Work Order #...: EMHXQ1AC Matrix.....: WATER

LCS Lot-Sample#: E1J200000-152

 Prep Date.....: 10/19/01
 Analysis Date..: 10/19/01

 Prep Batch #...: 1293152
 Analysis Time..: 20:36

	PERCENT	RECOVERY	
PARAMETER	RECOVERY	LIMITS	METHOD
Benzene	100	(75 - 120)	SW846 8260B
Chlorobenzene	98	(80 - 120)	SW846 8260B
1,1-Dichloroethene	96	(70 - 130)	SW846 8260B
Toluene	96	(80 - 120)	SW846 8260B
Trichloroethene	102	(75 - 130)	SW846 8260B

	PERCENT	RECOVERY
SURROGATE	RECOVERY	LIMITS
Bromofluorobenzene	99	(75 - 120)
1,2-Dichloroethane-d4	93	(65 - 130)
Toluene-d8	100	(80 - 130)

NOTE(S):

Calculations are performed before rounding to avoid round-off errors in calculated results.

General Chemistry

Client Lot #...: E1J170291

Matrix..... WATER

 PERCENT
 RECOVERY
 PREPARATION - PREPRANCE
 PREPARATION - PREPARATION

Analysis Time..: 17:09

NOTE(S):

Calculations are performed before rounding to avoid round-off errors in calculated results.

TOTAL Metals

Client Lot #:	E1J170291			Matrix WATER		
PARAMETER	PERCENT RECOVERY	RECOVERY LIMITS	METHOD	PREPARATION- ANALYSIS DATE	WORK ORDER #	
LCS Lot-Sample#: Cadmium	E1J180000-	~	tch #: 1291182 SW846 6010B	10/18-10/19/01	EMCH11AE	
Chromium	100	(85 - 120) Analysis Time.	SW846 6010B	10/18-10/19/01	EMCH11AF	
Copper	96	(80 - 120) Analysis Time.	SW846 6010B	10/18-10/19/01	EMCH11AG	
MOTE(C).						

Calculations are performed before rounding to avoid round-off errors in calculated results.

MATRIX SPIKE SAMPLE DATA REPORT

GC/MS Volatiles

Client Lot #:	E1J170291	Work O	rder #:	EL82N1AF-MS	Matrix:	WATER
MS Lot-Sample #:	E1J160293-003			EL82N1AG-MSD		
Date Sampled:	10/16/01 08:45	Date Re	eceived:	10/16/01 18:	25 MS Run #:	1293032

 Prep Date.....: 10/20/01
 Analysis Date..: 10/20/01

 Prep Batch #...: 1293152
 Analysis Time..: 06:01

	SAMPLE	SPIKE	MEASRD		PERCENT			
PARAMETER	TRUOMA	AMT	AMOUNT	UNITS	RECOVERY	RPD	METHOL)
Benzene	ND	10.0	10.4	ug/L	104		SW846	8260B
	ND	10.0	10.4	ug/L	104	0.0	SW846	8260B
Chlorobenzene	ND	10.0	10.2	ug/L	102		SW846	8260B
	ND	10.0	10.2	ug/L	102	0.19	SW846	8260B
1,1-Dichloroethene	ND	10.0	9.64	ug/L	96		SW846	8260B
	ND	10.0	9.69	ug/L	97	0.51	SW846	8260B
Toluene	ND	10.0	9.89	ug/L	99		SW846	8260B
	ND	10.0	9.87	ug/L	99	0.20	SW846	8260B
Trichloroethene	ND	10.0	10.6	ug/L	106		SW846	8260B
	ND	10.0	10.4	ug/L	104	1.7	SW846	8260B
			PERCENT		RECOVERY			
SURROGATE			RECOVER	Y	LIMITS			
Bromofluorobenzene			101	_	(75 - 120	0)		
			98		(75 - 120))		
1,2-Dichloroethane-d4			100		(65 - 130))		

100

99

99

(65 - 130)

(80 - 130)

(80 - 130)

NOTE(S):

Toluene-d8

Calculations are performed before rounding to avoid round-off errors in calculated results.

MATRIX SPIKE SAMPLE DATA REPORT

TOTAL Metals

Client Lo Date Samp	••			Date Receive	ed: 10)/17/	01 15:5		x: WAT	ER
	SAMPLE	SPIKE	MEASURED		PERCNT				PREPARATION-	WORK
PARAMETER	AMOUNT	AMT	AMOUNT	UNITS	RECVRY	RPD	METHOI)	ANALYSIS DATE	ORDER #
MS Lot-San	mple #:	E1J17	0291-001	Prep Batch	#: 12	91182	2			
oddii 2 dii	ND	0.050	0.0497	mg/L	99		SW846	6010B	10/18-10/19/01	EMAXK1AK
	ND	0.050	0.0481	mg/L	96	3.1	SW846	6010B	10/18-10/19/01	EMAXK1AL
			Anal	ysis Time: 19	:26					
			MS R	un #: 12	91063					
Chromium										
	ND	0.200	0.207	mg/L	103		SW846	6010B	10/18-10/19/01	
	ND	0.200	0.202	mg/L	100	2.4	SW846	6010B	10/18-10/19/01	EMAXK1AN
				ysis Time: 19						
			MS R	un #: 12	91063					
Copper										
	ND	0.250	0.277	mg/L	107		SW846	6010B	10/18-10/19/01	EMAXK1AP
	ND	0.250	0.269	mg/L	104	3.0	SW846	6010B	10/18-10/19/01	EMAXK1AQ
			Anal	ysis Time: 19	:26					
			MS R	un #: 12	91063					

Calculations are performed before rounding to avoid round-off errors in calculated results.

NOTE(S):

MATRIX SPIKE SAMPLE EVALUATION REPORT

GC/MS Volatiles

Client Lot #: E1J1702: MS Lot-Sample #: E1J1602:		Order #: El	L82N1AF L82N1AG		rix:	WATER
Date Sampled: 10/16/03 Prep Date: 10/20/03	l Analys	sis Date: 10	0/20/01		Run #:	1293032
Prep Batch #: 1293152	Analy	sis Time: 0	6:01			
	PERCENT	RECOVERY		RPD		
PARAMETER	RECOVERY	LIMITS	RPD	LIMITS	METHOD	
Benzene	104	(75 - 120)			SW846 8260B	
	104	(75 - 120)	0.0	(0-25)	SW846 8260B	
Chlorobenzene	102	(80 - 120)			SW846 8260B	
	102	(80 - 120)	0.19	(0-25)	SW846 8260B	
1,1-Dichloroethene	96	(70 - 130)			SW846 8260B	
	97	(70 - 130)	0.51	(0-25)	SW846 8260B	
Toluene	99	(80 - 120)			SW846 8260B	
	99	(80 - 120)	0.20	(0-25)	SW846 8260B	
Trichloroethene	106	(75 - 130)			SW846 8260B	
	104	(75 - 130)	1.7	(0-25)	SW846 8260B	
		PERCENT		RECOVERY		
SURROGATE		RECOVERY		LIMITS		
Bromofluorobenzene	-	101		$\frac{111113}{(75 - 120)}$	1	
Bromorraoropenzene		101		(75 - 120	,	

98

100

100

99

99

(75 - 120)

(65 - 130)

(65 - 130)

(80 - 130)

(80 - 130)

NOTE(S):

Toluene-d8

Calculations are performed before rounding to avoid round-off errors in calculated results.

Bold print denotes control parameters

1,2-Dichloroethane-d4

MATRIX SPIKE SAMPLE EVALUATION REPORT

TOTAL Metals

Client Lot Date Sample		70291 7/01 07:45 Date Re	eceived.	.: 10/17/01	Matrix 15:50	: WATER
PARAMETER	PERCENT RECOVERY	RECOVERY LIMITS RPD	RPD LIMITS	METHOD	PREPARATION- ANALYSIS DATE	WORK ORDER #
MS Lot-Samp	le #: E1J17	70291-001 Prep Ba	atch #	.: 1291182		
Cadmium	99	(80 - 120)		SW846 6010E	10/18-10/19/01	EMAXK1AK
	96	(80 - 120) 3.1	(0-20)	SW846 6010E	10/18-10/19/01	EMAXK1AL
		Analysis Time	: 19:26			
		MS Run #	: 12910	63		
Chromium	103	(85 - 120)		SW846 6010E	10/18-10/19/01	EMAXK1AM
	100	(85 - 120) 2.4	(0-20)	SW846 6010E	10/18-10/19/01	EMAXK1AN
		Analysis Time	: 19:26			
		MS Run #	: 12910	63		
Copper	107	(80 - 120)		SW846 6010B	10/18-10/19/01	EMAXK1AP
	104	(80 - 120) 3.0				
		Analysis Time			, = , , ,	~
		MS Run #		53		

Calculations are performed before rounding to avoid round-off errors in calculated results.

SAMPLE DUPLICATE EVALUATION REPORT

General Chemistry

Client Lot #...: E1J170291 Work Order #...: EMAXK-SMP Matrix.....: WATER

EMAXK-DUP

Date Sampled...: 10/17/01 07:45 Date Received..: 10/17/01 15:50

% Moisture....: Dilution Factor: Initial Wgt/Vol:

Analysis Time..: 17:12 MS Run Number..: 1290278

Subcontract Reports

2852 Alton Ave., Irvine, CA 92606 (949) 261-1022 FAX (949) 261-1228 1014 E. Cooley Dr., Suite A, Colton, CA 92324 (909) 370-4667 FAX (909) 370-1046 7277 Hayvenhurst, Suite B-12, Van Nuys, CA 91406 (818) 779-1844 FAX (818) 779-1843 9484 Chesapeake Dr., Suite 805, San Diego, CA 92123 (858) 505-8596 FAX (858) 505-9689 9830 South 51st St., Suite B-120, Phoenix, AZ 85044 (480) 785-0043 FAX (480) 785-0851 2520 E. Sunset Rd. #3, Las Vegas, NV 89120 (702) 798-3620 FAX (702) 798-3621

LABORATORY REPORT

Prepared For:

STL Los Angeles

1721 S. Grand Avenue Santa Ana, CA 92705

Attention: Diane Suzuki Project: E1J170291 Sampled: 10/17/01 Received: 10/17/01

Reported: 10/25/01

This laboratory report is confidential and is intended for the sole use of Del Mar Analytical and its client. This entire report was reviewed and approved for release.

CA ELAP Certificate #1197 AZ DHS License #AZ0428

Del Mar Analytical, Irvine Pat Abe

Project Manager

2852 Alton Ave., Irvine, CA 92606 (949) 261-1022 FAX (949) 261-1228
1014 E. Cooley Dr., Suite A, Colton, CA 92324 (909) 370-4667 FAX (909) 370-1046
7277 Hayvenhurst, Suite B-12, Van Nuys, CA 91406 (818) 779-1844 FAX (818) 779-1843
9484 Chesapeake Dr., Suite 805, San Diego, CA 92123 (858) 505-8596 FAX (858) 505-9689
9830 South 51st St., Suite B-120, Phoenix, AZ 85044 (480) 785-0043 FAX (480) 785-0851

STL Los Angeles

Project ID: E1J170291

1721 S. Grand Avenue Santa Ana, CA 92705

Attention: Diane Suzuki

Report Number: IKJ0659

Sampled: 10/17/01

Received: 10/17/01

INORGANICS

•	Analyte	Method	Batch	Reporting Limit	Sample Result	Dilution Factor	Date Extracted	Date Analyzed	Data Qualifiers
				mg/l	mg/l				
	Sample ID: IKJ0659-01 (PT1-MW3-051	- Water)							
	Chromium VI	EPA 7199	I1J1753	0.0020	ND	1	10/17/01	10/17/01	
	Sample ID: IKJ0659-02 (PT1-MW15D-0	51 - Water)							
	Chromium VI	EPA 7199	I1J1753	0.0020	ND	1	10/17/01	10/17/01	
	Sample ID: IKJ0659-03 (PT1-MW6D-05	1 - Water)							
	Chromium VI	EPA 7199	I1J1753	0.0020	ND	1	10/17/01	10/17/01	
	Sample ID: IKJ0659-04 (PT1-MW15S-05	51 - Water)							
	Chromium VI	EPA 7199	I1J1753	0.0020	0.0088	1	10/17/01	10/17/01	
	Sample ID: IKJ0659-05 (PT1-MW6B-05)	1 - Water)							
•	Chromium VI	EPA 7199	I1J1753	0.0020	0.0049	1	10/17/01	10/17/01	
	Sample ID: IKJ0659-06 (PT1-MW14S-05	51 - Water)							
	Chromium VI	EPA 7199	I1J1753	0.0020	0.083	1	10/17/01	10/17/01	

Del Mar Analytical, Irvine Pat Abe

Project Manager

2852 Alton Ave., Irvine, CA 92606 (949) 261-1022 FAX (949) 261-1228 1014 E. Cooley Dr., Suite A, Colton, CA 92324 (909) 370-4667 FAX (909) 370-1046 7277 Hayvenhrurt, Suite B-12, Van Nuys, CA 91406 (818) 779-1844 FAX (818) 779-1843 9484 Chesapeake Dr., Suite 805, San Diego, CA 92123 (858) 505-8596 FAX (858) 505-9589 9830 South 51st St., Suite B-120, Phoenix, AZ 85044 (480) 785-0043 FAX (480) 785-0851

STL Los Angeles

Project ID: E1J170291

1721 S. Grand Avenue Santa Ana, CA 92705

Report Number: IKJ0659

Sampled: 10/17/01 Received: 10/17/01

Attention: Diane Suzuki

METHOD BLANK/QC DATA

INORGANICS

	Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Data Qualifiers
	Batch: 11J1753 Extracted: 10/17/01	_									
	Blank Analyzed: 10/17/01 (I1J1753-	-	0.0020	a/1							
	Chromium VI	ND	0.0020	mg/l							
_	LCS Analyzed: 10/17/01 (I1J1753-F										
	Chromium VI	0.0520	0.0020	mg/l	0.0500		104	90-110			
	Matrix Spike Analyzed: 10/17/01 (I	1 J1753-MS 1	1)			Source:	IKJ0648	-01			
_	Chromium VI	0.0502	0.0020	mg/l	0.0500	ND	97.2	70-130			P2
-	Matrix Spike Dup Analyzed: 10/17/0	01 (I1J17 5 3	-MSD1)			Source:	IKJ0648	-01			
	Chromium VI	0.0516	0.0020	mg/l	0.0500	ND	100	70-130	2.75	15	P2

Del Mar Analytical, Irvine

Pat Abe Project Manager

2852 Alton Ave., Irvine, CA 92606 (949) 261-1022 FAX (949) 261-1228
1014 E. Cooley Dr., Suite A, Colton, CA 92324 (909) 370-4667 FAX (909) 370-1046
7277 Hayvenhurst, Suite B-12, Van Nuys, CA 91406 (818) 779-1844 FAX (818) 779-184
9484 Chesapeake Dr., Suite 805, San Diego, CA 92123 (858) 505-8596 FAX (858) 505-9689
9830 South 51st St., Suite B-120, Phoenix, AZ 85044 (480) 785-0043 FAX (480) 785-0851

STL Los Angeles

Project ID: E1J170291

1721 S. Grand Avenue Santa Ana, CA 92705

Report Number: IKJ0659

Sampled: 10/17/01 Received: 10/17/01

Attention: Diane Suzuki

DATA QUALIFIERS AND DEFINITIONS

P2 Sample received without chemical preservation, but preserved by the laboratory.

ND Analyte NOT DETECTED at or above the reporting limit or MDL, if MDL is specified.

NR Not reported.

RPD Relative Percent Difference

Del Mar Analytical, Irvine

Pat Abe Project Manager

Appendix D Completed COC Forms

CALSCIENCE ENVIRONMENTAL LABORATORIES, INC.

7440 LINCOLN WAY GARDEN GROVE, CA 92841-1432 TEL: (714) 895-5494 • FAX: (714) 894-7501 E17180344

CHAIN OF CUSTODY RECORD

Date 10	15	Zeoi	
Page	i.	of	4

	LABOF	RATORY CLIENT:	IMP DRESSER	The	LEE					PROJE											P.O	NO.:					
	ADDRE	ESS: 18881 V	on KARMAN					PRC	JEC1	T CON	ITACI	Γ:									LAE	USE	ONL	Y T		<u> </u>	7
						•		sÅN.	JE MPLEE)) (εν: (SIGN	E-/V ATUR	NE)	ナナ							CO	OLER		<u> </u>			-
	949	752 5452	949 752 (30	>7 E-MA	AL:			I 1 \	lon)_	5	5_	_ں		-		asaa a				TEN	⁄IP = _				°	C
	TURN	AROUND TIME	HR 🗌 48 HR 🔲 72 HF	5 D	AYS STA	10 DA	SYS		٢.				F	EQ	UΕ	STE	D	4A	1AL	YS	ES						
	SPECI	AL REQUIREMENTS (ADDITIONAL COSTS MAY APP	LY)									e l				=					946)					
Ì		AL INSTRUCTIONS						1			18)		EnCore				r (8011)	010E)-15)		or (D1	5			W	
										(8021B)	(802		260B)				4.1) 0	ALS (6		or (T(5.1)	(127	7199		Col	AN	
3											HALOCARBONS (8021B)	90B)	VOCs (5035 / 8260B)	2700)	81A)	32)	EOB / DBCP (504.1)	CAC, T22 METALS (6010B)	10)	VOCs (TO-14A) or (TO-15)	CH4 / TGNM0 (25.1)	FIXED GASES (25.1) or (D1946)			,	DICXAN	
3	LAB			CAN	N. INC		NO. OF	(9)	(0)	BTEX / MTBE	OCAR	VOCs (8260B)	s (50)	SVOCs (8270C)	PEST (8081A)	PCBs (8082)	/ DB(, 122	PNAs (8310)	s (T0	/ TGN	D GA	$C_{r}(v_{i})$	_	~ Cu		
1	USE	SAMPLE ID	LOCATION/DESCRIPTION	DATE	PLING	MATRIX	CONT.	TPH	표	BTE	HAL	700	700	SVO	PES	PCB		CAC	PN	000	CH4	FX	S	РН	Cr	1.4	
		Pn-mw4-1	51 (VOA)	10/18/01	08:30	w	3					×			\perp											\perp	
			(125mL)		1	1			_														X				_
			(125mL)				1																	×			
			(500 m2)				١																		X		
		V	(IL AMBER)	Ψ.	Ψ		١																			×	_
	P	7-MW35-0	51 (NOA)	10/18/01	08:30		3					X															
			(125mL)	1	1		1																X				
			(125mL)				1								_									X			
			(500 m)			<u> </u>	1																		x	\perp	_
	Δ	(500-m2) V (12 Amber) P1-mw35-051 (you) 10/18/0 (125 ml) (125 ml)		V	V	V	1																			×	
	Relind	quished by: (Signatu	IFE)				eived b		-		15.		-	21	~					Dat	181	200 10,	20	Tim	ie:	35	7141 898-9702
	Reli	uished by: (Signatu	ire)	// -	>	Rece	eived b	y: (Si	gnati	ure)	00	, ,	-	~~						Dat	e: ////	1.		Tim	ie.		
	Relind	quished by: (Signato	ire)	<i>じ</i> ' ベ		Rece	eived fo	or Lat	orate		<u>~</u> `	<u> </u>		7						Dat	/ <i>X</i> e:	10,	/	Tim	ے ر <u>د</u> ie:	32	- Cran
			,							,	, ,,,,,	•	,	•						,							3

CALSCIENCE ENVIRONMENTAL LABORATORIES, INC.

7440 LINCOLN WAY **GARDEN GROVE, CA 92841-1432** TEL: (714) 895-5494 • FAX: (714) 894-7501

CHAIN OF CUSTODY RECORD

Date_ Page

LABO	RATORY CLIENT:	RESSER \$ MC.I	LEE				CLI	ENT	PROJ	ECT N	NAME	/ NUN	BER	,					f	P.O. I	NO.:				
ADDR	ESS:						PRO	OJEC	T COI	NTAC	Т:									LAB	USE		Y .		
CITY		STATE		ZI	Р															<u> </u>		<u>- L</u>	<u> </u>	<u> </u>	
TEL:		FAX:	E-N	MAIL:			SAN	MPLE	R(S):	(SIGN	IATUF	RE)									LER I				
TUDA	AROUND TIME						ļ																		°C
		HR □ 48 HR □ 72 H	R 🗆 5	DAYS \square	10 DA	YS	L.,	,				F	REC	UE	STE	D	AN	AL'	YSE	<u>:s</u>					
SPEC	IAL REQUIREMENTS (ADDITIONAL COSTS MAY AP	PLY)				1														(9				
		G ARCHIVE SAMP	LES UNTI	L /	_ / _	<u></u>				_		Core					i i	ا .	<u> </u>	- '	0197				P
SPEC	IAL INSTRUCTIONS								<u>6</u>	21B)		3) En				or (8	00	-	<u>:</u>		010				₹
i									(8021B)	(80		260				4.1	2	5	5 5 5 2	5	25.1			9	χ
									3E (8	SONS	(ac	2 / 8	(302	[¥]	2	3	- a	5 5	4 \ 2	2 2	ES (2	Ì		12 - W	DIOXANE
							ايرا	, o	MT	ARE	826	503	(82	808	808		77	5 5	- 5	<u> </u>	GAS	<u></u>	-	7	1
LAB USE	SAMPLE ID	LOCATION/DESCRIPTION		MPLING	MATRIX	NO. OF	TPH (G)	TPH (D)	BTEX / MTBE	HALOCARBONS (8021B)	VOCs (8260B)	VOCs (5035 / 8260B) EnCore	SVOCs (8270C)	PEST (8081A)	PCBs (8082)	EOB / DBCP (504.1) or (8011)	GAG, 122 METALS (00 10b)	LINAS (0310)	VULS (10-14A) or (10-15)	CH4 / 1GNMU (25.1)	FIXED GASES (25.1) or (D1946)	۲ر(۱)	PH	. 9	4
ONLY	SAMPLE ID	LOCATION/DESCRIPTION	DATE	TIME	MAINIA	CONT.	F	=	B	H,	>	>	S	죠	<u>-</u>	<u>ت</u>	ة د		5 5	5		ده			
	Market Pri-n	nw16-051 (104)	10/18/0	02', 00 is	w	3					X														
)	(1250	1		1	(:	$\times \bot$			
		(125m	1 1			1							ĺ										×		
	₩	(500 M		1		1										Ì								X	
	PTI-mwc	į į	1	1115		3					ኦ					\top		_	+-	\top		_	\dashv	\dashv	
	FILTIMAL	,	'	7) 11:12		1.	-									-	-		+			_	-		+
		(125m)	1		+-		-									\dashv			+	-		X	+		_
		(125 m	4)																+	+	_	-	X		\perp
		(Soom) (1)	top /			ì														\perp	\perp			×	
		(it Ambie	1	V		1																		ŀ	X
Λ					V							Ţ							-1						
Rein	uished by: (Signatu	re)	•		Bec	eived b	y: (Si	gnati	ure)										Date		ī	\dashv	Time))	
10	NV De				Jul.	X	Jak	lan	20	Dej	W	abi		ميد				1	<u>0//</u>	18	200	01	14 Time	<u> 3</u>	5_
Relint	uished by: (Signatu	re) ds	4 x		Rec	eived b	y:(Si a⊾	gnati 12	ure) *	4	$\sqrt{2}$	_	_						Date:	//	1.	,			
Beline	uished by: (Signatu	re)	,		Rece	eived fo	or Lat	borat	ory b	v: (Si	ignati	ıre)						1	odte:	8/	10/	<u> </u>	Time		? 2 .
	4=:5::00 = 7; (Orginato	· - ,					., <u>.</u> .u.	u (J. , J	, , ₍ Oi	g.,u.(,								,			,		

CALSCIENCE ENVIRONMENTAL LABORATORIES, INC.

7440 LINCOLN WAY
GARDEN GROVE, CA 92841-1432
TEL: (714) 895-5494 • FAX: (714) 894-7501

CHAIN	OF CUSTOD	Y RECORE
Date	10/18/01	
	~	4.

LABOR	RATORY CLIENT:	tup Dresson	15 N	NCKE	<u> </u>		CLIE	NT F	PROJE	CT N	IAME	/ NUN	BER	:						P.O	. NO.:					
AUUN	ESS:		7				PRO)JEC1	r con	TACT	Γ:									LAE	USE	ONL	Y [<u> </u>	_
CITY		STATE	ZII	Ρ		SAM	IPLE	R(S): (SIGN	ATUR	E)							-	CO	OLER	REC	EIPT				
TEL:		FAX:	E-MA	IL:					(-)- (-,														°C
TURN	AROUND TIME											F	REC	OLIF	ST	FD	Δι	NΔI	LYS							
		HR 🗌 48 HR 🔲 72 HR		AYS 🗆	10 DA	YS															T					_
SPEC	IAL REQUIREMENTS (ADDITIONAL COSTS MAY APP G	LY) FS UNTIL	/	/							e e				=					946)					
	IAL INSTRUCTIONS	d [] Andrive or and a								<u>8</u>		-Ju				(80	110B		15)		<u></u>	5			IJ	
									18)	3021		08)				1) or	S (60		(T)	=	1.0	ā		2	₹	
									(80	NS (8		826	3			504.	TAL		4) or	(25	; (25	7		7	Ö	
								ا ا	BTEX / MTBE (8021B)	HALOCARBONS (8021B)	VOCs (8260B)	VOCs (5035 / 8260B) EnCore	SVOCs (8270C)	PEST (8081A)	182)	EOB / DBCP (504.1) or (8011)	CAC, T22 METALS (6010B)	310)	VOCs (TO-14A) or (TO-15)	CH4 / TGNMO (25.1)	FIXED GASES (25.1) or (D1946)		.	Col-Cu	- DIOXANE	
LAB						I	(9)	<u>e</u>	N N	OCA	s (82	s (50	Cs (8	1 (8C	PCBs (8082)	108	, T2	PNAs (8310)	s (T(116	.D G	ج	-+	ĭ	4	
USE	SAMPLE ID	LOCATION/DESCRIPTION	PLING	MATRIX	NO. OF	TPH	TPH (D)	BTE)	HAL	000	000	SVO	PES	PCB	E08	CAC	PNA	000	CH₄	FIXE	CC	pH	-2			
	Pri-mu3	7-051 (von)	11:15		3					人																
		(125 mL)	1	<u> </u>		1																X				<u> </u>
		(IZJVW.)	\			1																	X			
		(SuomL)	{			l																		×		ĺ
		(1 L Am	Ryp.)	1		1																			X	
	PT1 - MW 7			13:25	-	3					X															
		(125 mL)		<u> </u>		1																X				
a Hara		(125 mL)				1																	X			<u></u>
i ess		(500 ML)	1	\downarrow		1																		×		
Λ																										
Reline	quished by: Signatu	ire)		Rece	eived b	y: (Sig	gnati	ure)	,		,	,)						Dat	e:	1_		Tim	10:	_		
3	quished by: (Signatu	(ra)			Rece	z_ y	V: 193	g	ILO)	12	por	da	b/e		1				/U/	18/	بالأن	21	Tim	: 3. ne:	>	
Hemai	quistied by: (Signatu	Dependable X		a neci	siveu D	y. (⊖n(<u>2</u>	ile.	. (.	7	11	2_							fol	17	01		/	5.3	ح		
Relin	quished by: (Signatu	ire)	Rece	eived fo		_		/: (Si	ighati	ure)							Dat	e: (<u> </u>		Tim	1e:				
/	-																									

DISTRIBUTION: White with final report, Green to File, Yellow and Pink to Client.
Please note that pages 1 and 2 of 2 of our T/Cs are printed on the reverse side of the Yellow and Pink copies respectively.

10/01/00 Revision

Del Mar Analytical

1014 E. Cooley Dr., Suite A Colton, CA 92324 (909) 370-4667 FAX (909) 370-1046 16525 Sherman Way, Suite C-11, Van Nuys, CA 91406 (818) 779-1844 FAX (818) 779-1843

Remarks:

10/18/2001

107920

9830 South 51st St., Suite B-120, Phoenix, AZ 85044 (602) 785-0043 FAX (602) 785-0851 CHAIN OF CUSTODY FORM 9484 Chesapeake Dr., Suite 805, San Diego, CA 92123 (619) 505-9596 FAX (619) 505-9689 Quote No.: Client Name: P.O./Project Number: Address: Project Name: City: State: Zip: Project Manager: Fax.: Tel: |Sampler(s) (signature): itle 22 Metals EPA 6010/7000 8020 (BTEX) MTBE only Oil & Grease - EPA 413. **Number of Containers** of Containers 3015/8020/MTBE TRPH - EPA 418. EPA 8010/8020 ATBE (8020) 3015 (Diesel) 8015 (Gas) distillation +MTBE ţĊ Sample I.D. PTI-MWII-051 Sieg PT1-EB02-051 10/18/01 × Relinquished by: Date/Time: Turnaround Time: Date/Time: Received by: (check one): Same Day 72 hours Daté/Timé: 5 Days eceived by: 24 Hours Relinquished by: 48 Hours Standard Date/Time: Relinquished by: Date/Time: Received in Lab by: Sample Integrity

On Ice

Intact:

Chain of Custody Record

Services Severn Trent Laboratories, Inc.

STL-4124 (0700)																										
Client STL LA		Project I		S	46	m	2	Ri	n	11	4								8	101	Cha	04	95	5 7	r	
1721 S Grand Au	y	Telepho	re Nur	nber (Are	a Cod	8 6	Nun	nber O	G,	1	30	9				Lab N			03	344	Pa	ige	/	of		
Sauta Ana State Zip of	92705	Site Con	tact			Lab	Conta	act				L		n	Analy nore s	sis (A	Attac	h list	if	7						
Project Name and Location (State)		Carrier/V	Vaybill	Number								194	7 1									S	necial	Inetri	ıctions/	,
Contract/Purchase Order/Quote No.				Matrix				conta resei				1	+												Receip	
Sample I.D. No. and Description (Containers for each sample may be combined on one line)	Date	Time	Aureous	Sed.	5	Unpres.	H2S04	NOS	Ę	NaOH ZnAc/	NaOH	19														
PT1-HW4-051	10/18/01	8:30	У	1						1		K														
PTT- HW 35-017		8:30	Ш									1														
PT1 - 46 16-057		9:50																								
PT1 - MW 09-051		11:15																								
9T1 - HW37-051		11:15						T		П		П														
PT1 - KW7-051		13:21			T						1															
PT1 - HW11-051		14:30										\prod														
(PT/ HW) Voibl =												\prod														
PM- EB02-051	V.	12:40		/						/		V	'													
Possible Hazard Identification				ple Dispo														(A le	e ma	/ be as:	sesse	d if sam	ples are	retain	ed	
Non-Hazard ☐ Flammable ☐ Skin Imitant ☐ Turn Around Time Required	Poison B	Unknown		Return To	Clien			sposa			S pecif		hive F	or		Mon	ths			n 3 moi						
Λ,	ys 21 Days	Othe	,				407	toquii	, 61110	```` <i>\</i>	рроси	y /														
1. Relinquished By	,	Date 10/1		Time	20		1. Re	ceive	1	A,	15		J									Oate	الد	Time	120	
2. Relinquished By Modern		Data	v i		15	-	2. Re	eceive	ed By	,											10	ate		Time		
3. Relinquished By		Date		Time			3. Re	Leive	en en		(Tal	Le	da							10	Pate / O -	18-0,	Time	7:4	
Temp 1°C FAtact	1/00		•						Y.Y.																<u> </u>	

90000

DISTRIBUTION: WHITE - Stays with the Sample; CANARY - Returned to Client with Report; PINK - Field Copy

CALSCIENCE ENVIRONMENTAL LABORATORIES, INC.

7440 LINCOLN WAY GARDEN GROVE, CA 92841-1432 TEL: (714) 895-5494 • FAX: (714) 894-7501 97577.7

CHAIN OF CUSTODY RECORD

Page ______of ____

ABOR	ATORY CLIENT:	Amp Dresser	5 me	Kt	E			CLI								9-1	146	رجه پر				. NO.:	:				
ADDRE	18991	Las Karma			50 ZIE	7,5		PR	OJEC	T COI	NTACT	> 16 > £		~ 7	27	i			16.7	<i>- E L J</i>	LAE		-[][<u> </u>	
TEL 9	49 75254	(50R-714.272.12	E-N					SAI		0	SIGN		1E)														_°C
TURNA	AROUND TIME AME DAY 24	4 HR □ 48 HR □ 72 HF	3 🗆 5	DAYS	NOR	10 DA	YS		J				ī	REC	UE	STI	ΞD	AI	NAI	LYS	ES						,
SPECH	AL REQUIREMENTS	(ADDITIONAL COSTS MAY APP NG ARCHIVE SAMPL							ore				=	(a)				1946)									
SPECI	AL INSTRUCTIONS					(8))21B)		B) EnC				5	(6010		TO-15)) or (D	de/	49			17				
						E (802)	NS (80	B)	/ 8260	()()	(A)		(504.1	ETALS		(A) or (0 (25.1	S (25.	X	Ž		Ed	DIOX4.				
		-	6	D) Or	/ MTB	CARBC	(8260	(5035	s (827)	(8081	(8082)	DBCP	T22 M	(8310	(T0-14	TGNM	GASE	4	3		خ	DIE					
LAB USE ONLY	SAMPLE ID	LOCATION/DESCRIPTION	NO. OF	TPH (TPH(BTEX	HALO	VOCs	VOCs	SVOC	PEST	PCBs	E0B /	CAC,	PNAs	VOCs	CH₄/	FIXED	4	77	せ	5	1.4				
	MW15-10160	Aay lo	3					Ϋ́																			
	-		1										_							X							
		- Caml	1								+										X	×	-				
	mwid-holic		3_													,											
	ν'	AMBOR IL	No.		\bigvee	V	j									_											X
	MW10-10	1401	10/140	14	30	-	3 i	-				X			-	+								1			
				-		+	l	-							1	_	+						\dashv	^	X		-
						V	t																			×	
Relind	uished by: (Signa	ture)				Rec	eved b	ψ: (S t \	ignat	ure)				. 460							`/.	1/0	,	Tim 14	e: , ' \	0	
Relino		ture)				Rec	eived b	y: (S	igna	are)	B		e d	5	_							6/0	1	Tim	ie:		
Reling	l	or La	borat	ory b	y: (Si	gnati	ure)		-	_				Date	e:	10				16	\dashv						
	TURNA S. SPECI. LAB USE ONLY	TEL 949 752 54 TURNAROUND TIME SAME DAY 24 SPECIAL REQUIREMENTS RWQCB REPORTI SPECIAL INSTRUCTIONS LAB USE SAMPLE ID MWID-10 Relinquished by: (Signal Relinquished By: (ADDRESS: 898 Vow KARMAN CITY	ADDRESS: 898 Von KARMAN CITY CRVINE STATE CA TEL 940 752 545 STATE CA TURNAROUND TIME SAME DAY 24 HR 48 HR 72 HR 5 SPECIAL REQUIREMENTS (ADDITIONAL COSTS MAY APPLY) RWQCB REPORTING ARCHIVE SAMPLES UNTI SPECIAL INSTRUCTIONS ABB USE	ADDRESS: 899 Vow Karmen	ADDRESS: 898 Von KARMA H 650	ADDRESS: San Vow Karman	ADDRESS: 1	ADDRESS: SAMPLE ID LOCATION/DESCRIPTION SAMPLING MATRIX MO. OF	ADDRESS: SP9 Vow KARMW H 650 PROJECT CITY R VINE CA PROJECT CA	ADDRESS: 1898 I VON KARMAN # 650 CITY (RVINE CA 927)5 TEL 940 752 545 0R-71A.272.120 E-MAIL: TURNAROUND TIME SAMPLENS: SPECIAL REQUIREMENTS (ADDITIONAL COSTS MAY APPLY) RWQCB REPORTING ARCHIVE SAMPLES UNTIL / / SPECIAL INSTRUCTIONS AMMIS-101601 VOA 101401 13.15 W 3 Relinquisted by: (Signature) Received by: (Signature)	ADDRESS: 899 Vow KARMAN # 650 PROJECT CONTACT TOTAL STATE PROJECT CONTACT TOTAL PROJECT CONTACT TOTAL PROJECT CONTACT STATE PROJECT CONTACT TOTAL PROJECT CONTACT TURNAROUND TIME SAME DAY 24 HR 48 HR 72 HR 5 DAYS 10 DAYS SPECIAL REQUIREMENTS (ADDITIONAL COSTS MAY APPLY) RECOMMENDATIONS ARCHIVE SAMPLES UNTIL / / / MWIS-101601 VDA 101401 13 15 W 3 10 DAYS SPECIAL INSTRUCTIONS AMBURIST TIME MATRIX NO. 07 HL 11 H	ADDRESS: 899 Vow KARMAN H & 50	ADDRESS: 899 Vow KAMM 4650 PROJECT CONTACT: CRVINE STATE G1P SAMPLERIS: (SIGNATURE)	ADDRESS: 899 I VON KARMIN # 650 STATE 21P (RVINE FAX: LA 72715 SAMPLERS); (SIGNATURE) TEL 499 52 54 50 8 -14 272 170 E-MAIL: TURNAROUND TIME	ADDRESS: STATE PROJECT CONTACT: CRVINE STATE PROJECT CONTACT: SAMPLER(S): (SIGNATURE) SAMPLER(S): (SIGNATURE) SAMPLER(S): (SIGNATURE) SAMPLER(S): (SIGNATURE) SAMPLER(S): (SIGNATURE) SAMPLER(S): (SIGNATURE) SAMPLER(S): (SIGNATURE) SAMPLER(S): (SIGNATUR	ADDRESS: STATE CAMP PROJECT CONTACT: STATE CAMPULER C	ADDRESS: 1	ADDRESS: 1991 Von Kamme H 650 1892 Von Kamme H 650 1892	ADDRESS: 1	ADDRESS: Sag Vow Kamma	ADDRESS: A DRESSCR B C C A C A C C A C C A C C A C C A C C A C C A C C A C C A C C A C C A C C A C C A C C A C A C C A C C A C C A C C A C C A C C A C C A C C A C C A C C A C C A C C A C C A C A C C A C C A C C A C C A C A C C A C	ADDRESS: S99 Vow KAMMA	ADDRESS: 1	ADDRESS APPLIED TOCH 2279-11462711.FED LAB USE ONLY CA F2715 SAMPLERIS (SIGNATURE) COOLER RECEIPT TEMP = TIME SPECIAL INSTRUCTIONS SAMPLER UNTIL / / SAMPLER UNTIL / / SPECIAL INSTRUCTIONS SAMPLER UNTIL / / SAMPLER UNTIL / / SPECIAL INSTRUCTIONS SAMPLER UNTIL / / / / / / / / / / / / / / / /	ADDRESS: 999 Vol Kamma	ADDRESS Sag Vol Kamm

10/01/00 Revision

Chain of Custody Record

Services Severn Trent Laboratories, Inc.

STL-4124 (0700)																	 											
Client STZ CA	Projec	t Man	ager	6	Q,	àu	w	7	fî	40.	V i	4	,				ate O	170	0/	20	0/	/	Chai	ΰ4	<u>"g</u> "	555	er 	
1721 S Grand Are	Telepi	hone f	Vumb											•			5 N			02	28	,	Pag	ge	1	。	<i>,</i>	/
State State 210 Code 92 70T	Site C	ontaci	!			1	000	onta	ct U2	L.	1-	·		_	_				list eede									
Project Name and Location (State) PT Sough Fr Spring Contract/Purchase Order/Quote No.	Carrie	r/Way	bill N	umbe	er				5				11											s	pecia	al Instr	uctio	ns/
Contract/Purchase Order/Quote No.			М	atrix	1					iners vativ			NA.											C	onditi	ons of	Rec	eipt
Sample I.D. No. and Description (Containers for each sample may be combined on one line)	Time	Air	Aqueous	Sed.	Soil		Unpres.	H2S04	SOME		ZnAc/	NaOH	0/6															
MW15-101601 Idlelot	1317		X			_ (_					-	×		-	-					1		-					
SMWID-101601 "	1430		*	\dashv			+	+	+	+	+	+	7	+	+	+	+	\dashv	+	+	+	+	+					
)—————————————————————————————————————				1	+	-	+			+	+	\dagger		1	1			+		_	+	+						
								_						_						4	1							
		-		\dashv	+	+	+	+	+	+	+	+	-	+	-	-	\dashv	\dashv	+	\dashv	+	+	\dashv					
		+		1	\dashv	+	+	+	\dagger	+	\dagger	+	-	+	\dagger	+	+	+	+	+	+	+	\dashv					
				_	_	_	_	-	-	1	-	_	_	+	-	-	_	\dashv	\perp	4	_	+	-		<u> </u>			-,
		-		-	+	-	+	+	+	-	-	+	-	+	+	-	\dashv	\dashv	\dashv	\dashv	+	+	+		-			
Possible Hazard Identification		Is	ample	Dis,	posai											-L	 		44.			<u> </u>	L.					
Non-Hazard	Unknow	ın [Re	turn	To CI	ient	X	Dis C R	posa	l By	Lab	Spec	Arc	hive	For		 Monti	15	longe	r tha	y be a	nont	hs)	i ii san	npies a	re retai	nea	
24 Hours 48 Hours 7 Days 14 Days 21 Da		ther	10			<u>.</u>	_						,,				 									T :-		
1. Relinquished By	Date	الو	101	Tim 1	8 84	13		. Re	/	_	_		\geq	_)\ [©]	6/0	2	(8.	143
2. Relinquished By	Date			Tim	ne .		2	2. Kei	ceive	d By		_											D	ate		Tin	ne	
3. Relinquished By	Date	-		Tim	ne		3	3. Red	ceive	d By													D.	ate		Tin	те	
comments 3°C				•																								
DISTRIBUTION: WHITE - Stays with the Sample; CANARY - Returned to	Client with R	eport;	PINK	- Fie	eld C	ору					-						 							-				

CALSCIENCE ENVIRONMENTAL LABORATORIES, INC.

7440 LINCOLN WAY GARDEN GROVE, CA 92841-1432 TEL: (714) 895-5494 • FAX: (714) 894-7501

esser \$ MCKEE

E-MAIL:

FAX 9 752 1307

7IP

LABORATORY CLIENT/

ADDRESS:

	OF CUSTODY RECORD
Date/	0/18/01
Page	of
	P.O. NO.:
	LAB USE ONLY
•	COOLER RECEIPT TEMP = °C
ED ANAL	
LD ANAL	10%
E0B / DBCP (504.1) or (8011) CAC, T22 METALS (6010B) PNAS (8310)	VOCS (TO·14A) or (TO·15) CH₄ / TGNMD (25.1) FIXED GASES (25.1) or (D1946) X Cr(v.) 7199 (A - D/0 Xya x ≠ Cr - Cu - Cd //∀z p
	X X
	X X
	×
	X
	X
	Date: Time: 08.30 Date: Time: 40/13/01 9 20
1	Date: Time: 0 3 7001
	Date: Time: 9 20.

- 1		AME DAY 24 1	HR 🗌 48 HR 🗌 72 HR	. [] 5 D	AYS X	10 DA	YS							720	10E	:5 I		A	NA					<u> </u>			_
ł	SPECI	AL REQUIREMENTS (ADDITIONAL COSTS MAY APP	LY)																			(91		12/4			
	☐ R\	WQCB REPORTIN	G ARCHIVE SAMPL	ES U	NTIL	/	_	<u> </u>						EnCore				(8011)	<u>(a)</u>		٠		1192			M		
Γ	SPECI	AL INSTRUCTIONS										18)		En(9 70	3010		0-15	ł	or (E		66	3		
-											(8021B)	(802		809				=	rs (Ē	<u>-</u>	5.1)		118	OXANE	7	
											180	NS	€ E	/ 8260B)	í j	=		(504	ETA		A) 0	0 (2)	S (2)		1	0/1	,	
1											MTBI	IRBO	2601	035	8270	081	082)	ВСР	22 M	310	0.14	NN.	ASE		2	1	7	9
t	LAB			NO. OF	TPH (G)	TPH (D) or	BTEX / MTBE	HALOCARBONS (8021B)	VOCs (8260B)	VOCs (5035 /	SVOCs (8270C)	PEST (8081A)	PCBs (8082)	EOB / DBCP (504.1) or	CAC, T22 METALS (6010B)	PNAs (8310)	VOCs (TO-14A) or (TO-15)	CH4 / TGNMD (25.1)	FIXED GASES (25.1) or (D1946)	ρΉ	(10)	M		χX				
	USE	SAMPLE ID	LOCATION/DESCRIPTION	CONT.	핕	IE	BT	HA	VO	0	SV	PE	Sd	8	CA	PN	0	ᇙ	준	1	\mathcal{C}	7	7	//				
		PTI-M	w44-051	3					×																			
		1		1					•											X								
-				1.																	×							
İ			(IL AMBER)	1																		Z		X				
		V			1																		-	×				
		PTI - DIOI -	051		3					X																		
		1			1																v.							
ı	4			1.																	X							
								1																		x		
	$\overline{}$	V		1	/	1	\bigvee	1																		-	X	
t	Relind	uished by: (Signatu	re)				Rec	eived b	y: (S	ignat	ure)		-7			L					Dat	e:\			Time			
7	_1 (JK 12					2	041	4		ر کے		_ ଓ	_							1011	3/2	2001		08		٥	
	Relino	uished by: (Signatu	re)				Rec	eived b		ignat L-	ture)	2	\ =								Dat	e: ` ໂລປ :	101	,	Time	e: 2	A)	
1	Relinc	wished by: (Signatu	ire)				Rec	eived fo		_	torv h	y: (S	ignat	ure)							Dat	<i>(</i>	01		Time			
	. 10001	Licitor by. (bigilata									, •	٠,٠,٥		•,														
ı		DISTRIBUTION	: White with final report. Green	to File	Yello	ow and Pink	o Clier	nt.										-							10/0	1/00	Revis	ion

E11180165

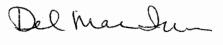
PROJECT CONTACT:

SAMPLER(S) (SIGNATURE)

CLIENT PROJECT NAME / NUMBER:

PHI BIZETECH-PY1

CALSCIENCE ENVIRONMENTAL LABORATORIES, INC.


7440 LINCOLN WAY GARDEN GROVE, CA 92841-1432 TEL: (714) 895-5494 • FAX: (714) 894-7501

CHAIN	OF	CHIST	ODV	DECC	חםו
CHAIN	UL	CO21	UŲT	コロして	JNU

Date	(0/18	1200	1
	7	7	
Dago		of.	

LABOF	RATORY CLIENT:	mp DRESSET	2 5 n	reic	(1) by			CLII	ENT I	PROJI	ECT N	IAME	/ NUI	MBER	:						P.O	. NO.	:				
ADDRE	ESS:	1 2	1,	. ,	-			PRO	OJEC	T COI	NTAC	T:									LAE	USE	ONL	Υ			_
CITY		STATE			ZIF	,		<u> </u>													<u> </u>] [<u> </u>	<u></u>		<u></u>	╝
TEL:		FAX:	E-N	AAIL:				SA	MPLE	R(S):	SIGN	ATUF	RE)											CEIPT			
								1	()	_	١٧	<u>شـــــ</u>														<u> </u>	°C
	AROUND TIME	HR □ 48 HR □ 72 HF	3 □ 5	DAYS	s 🗆	10 DA	_{vs} <	<u> </u>	I					REC	JUE	ST	ED	Al	NA	LYS	ES	;			, ,		_
SPECI	IAL REQUIREMENTS	ADDITIONAL COSTS MAY APP	PLY)						1													(91					
		G ARCHIVE SAMPL	ES UNTI	L	_ /	_ /							VOCs (5035 / 8260B) EnCore				EOB / DBCP (504.1) or (8011)	0B)		(0		FIXED GASES (25.1) or (D1946)			P''	-	
SPECI	IAL INSTRUCTIONS				<u></u> ⋒	21B)) En				or (8	601		0-15		or (I		9	DIOXANE	3						
					0211	(80)		,60E				4.1	ILS () r	5.1)	5.1)		6011	Z.	Cu -						
					E (8	ONS	<u>B</u>	185	(00,	¥		(20	/ET/	=	4A) (10 (2	ES (2		~	3	2						
				5	BTEX / MTBE (8021B)	HALOCARBONS (8021B)	VOCs (8260B)	303E	SVOCs (8270C)	PEST (8081A)	PCBs (8082)	BCP	CAC, T22 METALS (6010B)	PNAs (8310)	VOCs (TO-14A) or (TO-15)	CH4 / TGNMO (25.1)	3ASI		9	4-	الجر						
LAB			SAI	MPLIN	G		NO. 0F	TPH (G)	TPH (D)	EX /	201	Cs (8	Cs (OCs	ST (8	Bs (8	B / C	T, T	As (Cs (4 / T	(ED (Pit	C	1,1		
USE	SAMPLE ID	LOCATION/DESCRIPTION	DATE		TIME	MATRIX	CONT.	ΙL	급	BT	H	0/	0/	SV	퓝	PC		C/	4	9	동	Ê					
	PTI-EBOI-	651	Idinla	14:	745	W	3					X		*													
							•											X									
							1																	χ			
7							i																		X		
			V		V		1																			X	\exists
				-	<u> </u>				-																		\dashv
								 															\vdash			-	
							 	 																			
									ļ]
ľ																											
Relind	quished by: (Signa)	ire)	<u>+</u>			Rece	eived b	y: (Si	ignat	ure)		71								Dat		7		Tim	ie:	$\overline{}$	
	my 1	ستعو				5	L			بجرً		4	_							[0]	118	12	רשם	08	3 - 3	<u>50</u>	
Relind	quished by: (Signati	ıre)				Hece	eived b			u <u>re)</u>	77	•	_							Dal	e: (/	ا ً	Tim	1e:		
Poline	quished by: (Signatu	Iro)		<u> </u>	 	Rece	eived fo	lG.		on/h	V: (Si	ianet	ura)							Dat	<u> </u>	10/		ر. Tim		<u> </u>	
l usiiii(quisited by, (Signatt	11 0)				Hece	,veu I	JI LAI	JUIAL	UIY D	y. (31	ynai	ui e)							Jal	J.			''''	ıG.		-

Chain of Custody Record

Services Severn Trent Laboratories, Inc.

STL-4124 (0700)																										
Client		Project	Mana	ager	•				1								Da						Chain	49	ly Number	er .
STL LOS ANGELES			Ωı	a	٨	ے	w	24	Ų	_	` =						1	10	// 8 nber	/	2/		ن ا	49.	<u> </u>	
Address	_	Telepho	one N	lumbe	er (A	rea Co	ode)/f	a) Nu	ımbe	٧,		45		_	_		La	b Nun	nber					,		
Address Address 172/ S. Grand Au City City Can State City Can Can Can Can Can Can Can Can	<u> </u>	Telepho	10	$\angle)$	9	<u> </u>	<u>> 8</u>	ナ <u>ー</u>	8	-6	6	0	<u>X</u>	30	25								Page		0	/
Santa ana CA	Code	Site Co	ntact				Lal	Con	tact						/				ach li nee							
July a line	92705													100		1110	re sp.	ace is	, riee	T	ГΤ	$\neg \tau$	\dashv			
Project Name and Location (State)		Carrier	Wayl	bill Νι	ımbe	er								29	ı					1		İ				
E17/80/65 Contract/Purchase Order/Quote No.														7												uctions/
Contract/Purchase Order/Quote No.				M	atrix	ť	1		Con					70	1									Condi	ions of	Receipt
			ļ.,,						Pres	erva		_		0						ĺ						
Sample I.D. No. and Description (Containers for each sample may be combined on one line)	Date	Time	Air	Aqueous	Sed.	Soil	Unpres.	H2S04	HNOS	HCI	NaOH	ZnAc/ NaOH		S												
PT1-MW4A-051	10/17/01	1535		X		_					Ÿ			V												
PT1-DI01-051	10/17/01/	445		8	_				_	_	Ϋ́	_	_	8	_				_	_		\perp				
PTI-EBO1-051	10/17/01	1445		X							$ \varphi $			\bowtie												
Ó																T				1						
Š				+	-	-	+-	-	-	-	-	-	 	-	+	+-	-	+	+-	+		+	\dashv			
<u> </u>				_	_						$oxed{}$					1		_				\perp				
מ							1																			
				\neg	\dashv	\neg	1								\top			\top	+	T		\top	\top			
				\dashv	\dashv	\dashv	+	-	-	-	-				+	+	\vdash	+	+		+	+				
	.,			+	\dashv	_	+	-	-		-				+	+		+	+	+		+	+			
				十	+		+	-		-	-		 	-	+	+-	\vdash	+	+	+		+	\dashv			
			\vdash		\dashv	+	+-	\vdash	-	-	-		-		-	+	H	+	+	╁╌	-	+	+-			
		•	-	\dashv	+		+	-	_	-	_	-	_	-	+			-+-	+-	-	+	+	-			
	l		لِـا			Щ.				L	L.											\perp				
Possible Hazard Identification		-	1	_ `		posal	•						_						(A	lee m	ay be	asse	ssed if	samples	are retair	ned
	Poison B	Unknown	<u> </u>	Rel	urn	To Clie	ent							Archive	e For		^	fonths	lor	iger th	an 3 i	month	hs)			
Turn Around Time Required 24 Hours 48 Hours 77 Days 14 Days	ave D 21 Dave	□ Oth	nor			0		100	кеq	uiren	nent	s (Sp	ecity)							1	4	v			
1. Relinquished By	.,. Lizioays	Date			Tim	No		1. F	Recei	ived i	Ву											/	Date	,	Tim	e
man		Pale / O -/	18	¥	1	0 5	0				•															
2. Relinquished By		Date			Tim	ne			Recei		•												Date	•	Tim	е
3. Relinquished By		Date			Tim	ne .		3. F	Recei	ived	Ву			\sim	1/1		ń						Date	, ,	Tim	е —
									X	<u> </u>	21	رلىر	52~	$_{-}\mathcal{V}$	ν	0	₹_	20	,				10	1181	21 1	5:50
Comments																		X								
NO 'T' FLAG	S																L									

Del Mar Analytical
2852 Alton Ave., Irvine, CA 92606 (949) 261-1022 FAX (949)

2852 Alton Ave., Irvine, CA 92606 [949] 261-1022 FAX (949) 261-1228
1014 E. Cooley Dr., Suite A Colton, CA 92324 (909) 370-4667 FAX (909) 370-1046
16525 Sherman Way, Suite C-11, Van Nuys, CA 91406 [818] 779-1844 FAX (818) 779-1843
9830 South 518 St., Suite B-120, Phoenix, AZ 85044 (669) 785-0043 FAX (618) 779-1859

9830 South 51st St., Suite B-120, Phoenix, AZ 85044 (602) 9484 Chesapeake Dr., Suite 805, San Diego, CA 92123 (619)					(CHAI	N OF C	US	STODY	FO	RM	10	[17]	1200,	,	Quote	No.:				Page:	<u> </u>	of	3
Client Name: CAme D	rus	S छार	- \$	McI	KEE	<u> </u>						P.C	D./Pro	oject N	lumber	: 2	27	9 -	1146	2-	III.F	. D.	Fai	
Client Name: CAmp D Address: \888 \ \Vc	~	KM	zw.	~ ~	,							- 1		Name:	_	71								
City: \RV:NE					State		CA	Z	Zip:			Pro	oject	Manag	jer:	5111	pa	~ (NAI	LIN)			
Tel: 949 752 54	52	-		Fax	c: C	149	752	, i	30	7		Sa	mple	r(s) (si	gnatur	e): ,	20/0/	2	\<	یع				
Samole I.D.	Matrix	Date Sampled	Time	Preservation	Number of Containers	ners	020 (ВТЕХ)	TBE	orint	Oil & Grease - EPA 413.2	IRPH - EPA 418.1	EPA 8010/8020	EPA 8270	Title 22 Metals EPA 6010/7000	EPA 8260 K + Oxygenates + HMTBE MTBE MTBE	Lead	Ha	(r(v)) 7149	1,4 - DIOXANE	Cr- Cu- Ca				ı
Sample I.D. PT I - Mw3 - 05 I	W	 	1007.		3	VUA			S 0, 0	·					X									
	1		1		(125											×							
ن ا			\top		l	125												×						
				١	11													*	2					
V			V		1	500														K				
PT1-MW15D-051			09:1	5	3	VOA									X									
\			ì		١	125											X							
		1			1	125												X						
		(1	IL													X					
\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	A	1	11	7	1	500		\top												X				
Reinquished by:	13.00	Received	7	Shu	1))-/ 1 -9	Date/Ti		<u>ه</u>		Turna Same	round	Time:	72	neck on						
Relinquished by:		_ <		e/Time:		-	Received	bý:	1. 1	2	77				Date/Ti				24 Hot 48 Hot				Days andard	
Relinguished by:			Date	e/Time:			Received	in L	ab by:		1	_	. 70	11/	Date/Ti		. 0 6		140 1101	113		Sia	ilu a lu ,	-X
Remarks:																Sampl Inta		rity:	. (On Ice				

Del Mar Analytical

2852 Alton Ave., Irvine, CA 92606 (949) 261-1022 FAX (949) 261-1228 1014 E. Cooley Dr., Suite A Colton, CA 92324 (909) 370-4667 FAX (909) 370-1046 16525 Sherman Way, Suite C-11, Van Nuys, CA 91406 (818) 779-1844 FAX (818) 779-1843 9830 South 51st St., Suite B-120, Phoenix, AZ 85044 (602) 785-0043 FAX (602) 785-0851

9830 South 51st St., Suite B-120, Phoenix, AZ 85044 (602) 9484 Chesapeake Dr., Suite 805, San Diego, CA 92123 (619)	505-9596	FAX (619) 5	05-9689		C	IAH	N OF	CU	IST	ODY	/ FO	RM	lo	רו/י	200	i	Quote	No.:	-			Page:	2	of .	3
Client Name: CAmp DP45, Address: (8881 Vo	SUR	- \$V	ucke	e									P.	O./Pr	oject N	lumber	:								
Address: 18881 Vo	~ K	her	new										Pr	oject	Name:										
City: ¡ Rung				;	State	: C	A		Zip:				Pr	oject	Manag	jer:									
Tel:				Fax	.: ક	P							Sa	ample	r(s) (si	gnatur	e):								
Sample 1.D.	Matrix	pata Campled	Time	Preservation	Number of Containers	Type of Containers	8015 (Gas) 8020 (BTEX) MTBE (8020)	8015/8020/MTBE	e e	simulated ruel distillation fingerprint	Oil & Grease - EPA 413.2	TRPH - EPA 418.1	EPA 8010 EPA 8010/8020	EPA 8270	Title 22 Metals EPA 6010/7000 + Cr VI	EPA 8260 Z + Oxygenates + MTBE MTBE MTBE	Lead	Hd	Cr(vi) 7199	1,4 - DIOXANE	Cr-Cu-Cd				
Sample 1.D. Sample 1.D. Sample 1.D.	Sample 1'D' A MATE A MA															×									
00	1-muiss-051 W W17/210:15 3 VOA														<u> </u>			X						\longrightarrow	
4				_	1	125													×						
				_	_										<u> </u>					SE					
						500															义				
PTI-MW-6D-051						VOA										X									
						125									_			X							
						125													X						
	V					16														X					
1	V	W				500															X				
Relinquished by:	- ;	16/17	12001	Time:	5.00)	Receiv Receiv	ved by ved by	he		~				17-20	Date/Ti		<u>`</u>		Same 24 Hou	ırs	Time:	72 5	hours Days	
Believisted by		\Rightarrow	-3 Dot-	/Times:			Receiv				(٠	10/	1/4/6	// Date/Ti	7.5 -	3 22		48 Hot	irs		Sta	ndard	×
Relinquished by: Remarks:			Date.	/Time:			Kecel	rea in	Laut		- 1					Date/11	e.	***************************************		Sample Inta	-	rity:	(On Ice	

Del Mar Analytical
2852 Alton Ave., Irvine, CA 92606 (949) 261-1022 FAX (949) 261-1228

1014 E. Cooley Dr., Suite A Colton, CA 92324 (909) 370-4667 FAX (909) 370-1046 16525 Sherman Way, Suite C-11, Van Nuys, CA 91406 (818) 779-1844 FAX (818) 779-1843 9830 South 51st St., Suite B-120, Phoenix, AZ 85044 (802) 785-0043 FAX (602) 785-0851 9484 Chesapeake Dr., Suite 805, San Diego, CA 92123 (619) 505-9596 FAX (619) 505-9689

9830 South 51st St., Suite B-120, Phoenix, AZ 85044 (60) 9484 Chesapeake Dr., Suite 805, San Diego, CA 92123 (61)						C	HAI	N C	F C	US'	TOE	Y F	DRM						Quote	No.:			_	Page:	3	of .	<u>3</u>
Client Name:	up 9	Dre	959	369	a	\$ 1	dre	Ki	حود					F	P.O./	/Proj	ject N	lumbe									
Address:						t								F	Proje	ect N	lame:										
City:					5	State	:			Zi	p:			F	Proje	ect N	lanag	ger:									
Tel:					Fax	.:								5	Sam	pler((s) (si	gnatui	e):								
Sample I.D. PTI - MW 56 B - 051 PTI - MW 45 - 051	1 3	125 A Type of Containers		MTBE (8020) 8015/8020/MTBE	8015 (Diesel)		Oil & Grease - EPA 413.2	TRPH - EPA 418.1	EPA 8010	EPA 8010/8020	EPA 8270	Trile 22 Metals EPA 6010/7000 +Cr VI	FPA 8260-K + Oxygenates + + + + + + + + + + + + + + + + + + +	Lead	×	X X Cr(W) 7199	1,4 - DIOKANE	· / /									
		+	-		HNOZ		300	┢		+		 			\top	1			-				<u> </u>				
Relinquished by: Relinquished by: Relinquished by:	<u> </u>	10	17	Zoc Date	/Time: /Time:	57.6	90_	/3 Rec	eived b eived b eived ir	26. 26.	6.			•		10-	17-1 D-17	Date/T Date/T Date/T	ime:	520c		Same	ırs		72 5	eck one hours Days ndard	
Remarks:																				-		4	act:		C	on ice_	

Chain of Custody Record

Services Severn Trent Laboratories, Inc.

STL-4124 (0700)					
Client STZ LA	Project Manag	ger Dian	e brouks	Date 10/17/01	Chair Gurody Number
Address 1721 Sokund Dug	Telephone Nu	imber (Area Code) 14) 258	L Susuk, Fax Number 8 6 10 GJ 30;	Lab Number 67/170291	Page of
South Ma State Zip Code CA 92705	Site Contact		ab Contact	Analysis (Attach list if more space is needed)	
Project Name and Location (State) Phibrofech /CSM	Carrier/Waybi	ill Number	Cai		Special Instructions/
Contract/Purchase Order/Quote No.		Matrix	Containers & Preservatives		Conditions of Receipt
Sample I.D. No. and Description (Containers for each sample may be combined on one line)			H2SO4 HUOS HCI NaOH NaOH 7/9		
PT1 -MW3-051 10/17/01	7:45	X	/ / X		#001
PTI - HW 15 D-051	9:15	K	1 1		2
3PT1- MW6D-057	11:25	7			4
1777 - MW 155-051	10:15	$X \mid \cdot \mid \cdot \mid$			3
PT1 - MW 68-051		Ř			5
PT1- KW 145 - 057 +	1430 1	K	1 ×		6
·					
Possible Hazard Identification Sample Disposal (A lee may be assessed if samples are retained Non-Hazard Flammable Skin Irritant Poison B Unknown Return To Client Disposal By Lab Archive For Months longer than 3 months)					
Turn Around Time Required QC Requirements (Specify)					
24 Hours 48 Hours 7 Days 14 Days 21 Days Other 10 dbys					
1. Relinquished By Recolds	Date 10/17	10 16:30		5	10/17/01 1745
2. Relinquished By	Date 10-17-1	/ 8/0	2. Received By		Dafe Time
3. Relinquished By	Date	Time	3, Regeived By		10(176) Time 8:10
Comments intact 4°(,					

Appendix E Background Groundwater Concentrations, Santa Fe Springs 1999

99 Water Quality Rep

This Annual Report is prepared by Central Basin Municipal Water District (Central Basin) as a service to the City of Santa Fe Springs. Central Basin provides imported surface water from the Metropolitan Water District of Southern California to 26 cities and unincorporated areas of Los Angeles County. Central Basin contributes to improving groundwater basin management through water quality, conservation and education programs.

Q Where does my drinking water come from?

A Your tap water comes from one or two major sources: groundwater and surface water. Your system pumps groundwater from one or more deep wells located predominately withing its service area. Your system may also use Metropolitan Water District of Southern California's imported surface water from the Colorado River and the State Water Project in Northern California. The quality of your system's groundwater is presented in this report. If your system used imported surface water in 1999, its quality is also described.

The sources of drinking water (both tap water and bottled water) include rivers, lakes, streams, ponds, reservoirs, springs and wells. As water travels over the surface of the land or through the ground, it dissolves naturally-occurring minerals and, in some cases, radioactive material, and can pick up substances resulting from the presence of animals or from human activity. Contaminants that may be present in source water include:

- Microbial contaminants, including viruses and bacteria, that may come from sewage treatment plants, septic systems, agricultural livestock operations, and wildlife:
- Inorganic contaminants, such as salts and metals, that can be naturally-occurring or result from urban stormwater runoff, industrial or domestic wastewater discharges, oil and gas production, mining or farming;
- Pesticides and herbicides, which may come from a variety of sources such as agriculture, urban stormwater runoff, and residential uses;
- Organic chemical contaminants, including synthetic and volatile organic chemicals, that are byproducts of industrial processes and petroleum production, and can also come from gas stations, urban stormwater runoff, and septic systems;
- Radioactive contaminants, which can be naturally-occurring or be the result of oil and gas production and mining activities.

To ensure quality tap water, USEPA and the California Department of Health Services (CDHS) prescribe regulations that limit the amount of certain contaminants in water provided by public water systems. CDHS regulations also establish limits for contaminants in bottled water that must provide the same protection for public health.

Why do I see so much news coverage about the quality of tap water?

A All drinking water, including bottles water, may reasonably be expected to contain at least small amounts of some contaminants. As water travels over the surface of the land or through the ground, it can pick up substances resulting from the presence of animals or from human activity. The presence of contaminants does not necessarily indicate that water poses a health rick. More information about contaminants and potential health effects can be obtained by calling the federal Environmental Protection Agency's Safe Drinking Water Hotline (1-800-426-4791).

How is my drinking water tested?

A Your drinking water is protected from unsafe levels of chemicals and bacteria by regularly scheduled testing. Drinking water wells are tested weekly, monthly, quarterly, annually, or up to once every five years depending on the type of chemical, the vulnerability of the well to nearby potential sources of contamination, and historic water quality information. Wells that may have the potential to be contaminated are tested more frequently. Testing intervals are set by the California Department of Health Services.

Central Basing Municipal Water District administers the testing program for your water supplier's wells. A state-certified laboratory collects and tests well samples. The Metropolitan Water District extensively tests the quality of imported surface water separately. Your water supplier also tests its distribution system for bacteria, color, odor, appearance and disinfection by-products, and for lead and copper at selected customer's taps. Water quality testing is performed by statecertified laboratories and trained specialists.

What are drinking water standards?

The federal Environmental Protection Agency sets regulations, or standards, that limit the amount of certain contaminants in tap water. In California, the Department of Health Services regulates tap water quality by enforcing standards that are at least as stringent as federal EPA standards. Historically, California standards are more stringent than the federal counterparts.

There are two types of standards. Primary standards protect you from chemicals that could potentially affect your health, such as toxic metals, pesticides, industrial solvents, and radioactive constituents. Secondary standards regulate chemicals that affect the aesthetic qualities of water, such as taste, odor and appearance. Regulations set a Maximum Contaminant Level (MCL) for each of the primary and secondary standards. The MCL is the highest level of a contaminant that is allowed in drinking water. Water suppliers must ensure water quality by complying with MCLs. Not all chemicals are regulated with MCLs. Lead and copper, for instance, are regulated by an Action Level. If either chemical exceeds its action level, a treatment process is required to reduce the levels in drinking water.

Public Health Goals (PHGs) are set by the California Environmental Protection Agency. PHGs provide more information on the quality of drinking water to customers, and are similar to their federal counterparts, Maximum Contaminant Level Goals (MCLGs), PHGs and MCLGs are levels that are of an advisory nature only.

Q How do I read the Water Quality Report?

A The first column of the water quality table lists chemicals detected in your water. The next column list the average concentration and range of concentrations found in your drinking water.

Following this are columns that list the MCL and PHG or MCLG, if appropriate. The last column describes the likely sources of contaminants in drinking water.

To review the quality of your drinking water, compare the highest concentration and MCL. Check for chemicals greater than MCL. Exceedence of a primary MCL does not usually constitute an immediate health threat. Rather, it requires the supplier to test the suspect well intensely for a short duration to confirm the initial finding. Confirming test results are averaged and, if greater than the MCL, the well must be treated to remove the chemical, or the well must be removed from service.

Should I take additional precautions?

A Some people may be more vulnerable to contaminants in drinking water than the general population. Immunocompromised persons such as persons with cancer undergoing chemotherapy, persons who have undergone organ transplants, people with HIV/AIDS or other immune system disorders, some elderly, and infants can be particularly at risk from infections. These people should seek advice about drinking water from their health care providers. The Environmental Protection

Agency/Centers for Disease Control guidelines on appropriate means to lessen the risk of infection of Cryptosporidium and other microbial contaminants are available from the federal EPA's Safe Drinking Water Hotline (1-800-426-4791).

How can I participate in decisions on water issues that affect me?

A In the City of Santa Fe Springs, the public is welcome to attend City Council meetings on the second and fourth Thursday of each month at 7:00 p.m.

For More Information:

If you have specific questions about your system's drinking water quality, please contact:Ron Hughes at (562) 868-0511 Esto es una informacion importante. Por favor, si lo pueden traducir.

Results are from the most recent testing performed in accordance with state and federal drinking water regulations.

PRIMARY STANDARDS MANDATED FOR PUBLIC HEALTH	GROUNDW AVERAGE	ATER RANGE	SURFACE %<0.5	WATER RANGE	PRIMARY MCL	MCLG or PHG	MAJOR SOURCES IN DRINKING WATER
CLARITY TURBIDITY (ntu) (a)	0.4	0.1-39	100%	0.09-0.1	π	- -	Soil runoff
MICROBIOLOGICAL (% POSITIVE)	AVERAGE	RANGE	AVERAGE	RANGE			
TOTAL COLIFORM BACTERIA (a) FECAL COLIFORM BACTERIA (a) NO. OF ACUTE VIOLATIONS	0% 0% 0	0% 0% 0	0.04% 0% 0	0-0.2% 0% 0	0	0	Naturally present in the environment Human and animal fecal waste
ORGANIC CHEMICALS (µg/l)					T		
TRICHLOROETHYLENE - TCE TRIHALOMETHANES, TOTAL-TTHMS (a) (b)	1.2	ND-3.4 27-45	ND 37	ND 24-51	5 100	0	Discharge from metal degreasing sites and other factories By-product of drinking water chorination
INORGANICS Date Sampled (e)							
ARSENIC (µg/l) 1998-1999 COPPER (mg/l) 30 sites in 1998 FLUORIDE (mg/l) 1998-1999 LEAD (µg/l) 30 sites in 1998 NITRATE (mg/l as N) 1999 ALUMINUM (mg/l) 1998-1999	4 0.34 (c) 0.29 ND (c) 0.9 ND	ND-7 ND-0.68 0.27-0.31 ND ND-1.8 ND	2 ND (c) 0.26 ND (c) ND 0.15	ND-3 ND 0.22-0.32 ND ND ND 0.09-0.25	50 1.3 AL 2 15 AL 10	0.17 (d) 1 (d) 2 (d) 10 (d)	Erosion of natural deposits, glass and electronics production wastes Corrosion of household plumbing Erosion of natural deposits, water additive that promotes strong teeth Corrosion of household plumbing Leaking from septic tanks and sewage; erosion of natural deposits Erosion of natural deposits, surface water treatment process residue
RADIOLOGICAL - pCi/l Analyzed	4 consecutive quarte	rs every 4 years (results are from 19	196 to 1999)			
GROSS ALPHA (h) GROSS BETA URANIUM	1.9 NA 5.3	ND-6.6 NA 4.5-6.0	4.9 6.7 3.3	2.4-8.1 6.1-10.6 ND-4.8	15 (h) 50 (h) 20 (h)	0 0	Erosion of natural deposits Decay of natural and man-made deposits Erosion of natural deposits

SECONDARY STANDARDS	GROUNDW	ATER	SURFACE		PRIMARY	MCLG	MAJOR SOURCES IN
FOR AESTHETIC PURPOSES	AVERAGE	RANGE	AVERAGE		MCL	or PHG	DRINKING WATER
CHLORIDE (mg/l) UNITS OF COLOR (a) THRESHOLD ODOR NO. (ton) (a) CONDUCTIVITY (umhos/cm) SULFATE (mg/l) TOTAL DISSOLVED SOLIDS (mg/l) MANGANESE (µg/l)	50 3 1 655 112 399 13	34-66 ND-10 1-2 470-840 54-170 262-535 ND-26	71 2 (f) 835 195 514 ND	65-78 1-2 (f) 781-938 175-234 478-588 ND	500 15 3 1600 500 1000 50		Erosion of natural deposits, seawater influence Naturally-occurring oragnic materials Naturally-occurring oragnic materials Seawater influence, disolved minerals Erosion of natural deposits Erosion of natural deposits Erosion of natural deposits

ADDITIONAL CONSTITUENTS	GROUNDY	VATER	SURFACE	WATER
OF INTEREST	AVERAGE	RANGE	AVERAGE	RANGE
pH (std unit)	7.8	7.6-8.0	8.1	8.0-8.1
TOTAL HARDNESS (mg/l)	221	105-337	250	228-289
CALCIUM (mg/l)	67	34-99	62	56-73
MAGNESIUM (mg/l)	13	5-22	24	22-27
SODIUM (mg/l)	60	53-67	77	70-87
POTASSIUM (mg/l)	2.9	2.2-3.6	3.8	3.6-4.1
PERCHLORATE (µg/l) (i)	ND	ND	. ND	ND-6
HALOACETIC ACIDS (µg/I)	NA NA	NA '	28	9.5-31
HALOACETONITRILES (µg/I)	NA NA	NA NA	7.7	4.8-12
CHLOROPICRIN (µg/I)	NA	NA	0.1	ND-0.4
HALOKETONES (pg/l)	NA .	NA NA	1.7	1-3.2
CHLORAL HYDRATE (µg/l)	NA	NA	4.0	1.5-6.8
TOTAL ORGANIC HALOGENS (TOX) (µg/l)	NA	NA.	15	72-174
CYANOGEN CHLORIDE (µg/l)	NA NA	NA NA	1.9	ND-3.1
RADON (pCi/l)	228	171-318	סא	ND-141

OUTNOTES

Compliance samples collected from points in the distribution system.

Average and range calculated by rubning average.

90th percentile from the most recent sampling at selected customer taps.

California Public Health Goal (PHG). Other advisory levels fisted in this column are federal Maximum Contaminant Level Goals (MCLGs).

Indicates datest ampled for groundwater sources only.

Metropolitan Water District of Southern California uses a flavor-profile test that more accurately detects odors.

(f) Metropolitan Water District of Southern Cantonian detects doors.

(g) Gross alphs standard also includes Radium-226 standard.

(h) MCL compliance based on 4 consecutive quarters of sampling. MCL standard is for combined Radium 226 plus 228.

(i) The California Department of Health Services set an Action Level of 18 µg/l in May 1997 and is evaluating perchlorate as a state primary drinking water standard. Health effects to date show that perchlorate affects the throrid gland.

SPECIAL NOTE ON RADON: Radon is a radioactive gas that you cannot taste, see or smell, and is a known human carcinogen. It is found throughout the country. Radon can move up through the ground and into a home through cruck is and holes in the foundation. Radon can build to high levels in all types of homes. Radon can also get into indoor air when released from tap water from showering and other household activities. Radon entering the home through tap water is a small source compared to radon entering the home time. and a nome introgra creats and notes in the related from tap water from showing and other household activities. Radon can also get into indoor air when released from tap water from showing and other household activities. Radon entering the home through tap water is a small source compared to radon entering the home through soil. Tap water contributes less than 5% of the total amount of radon in indoor air. If you are concreted about radon in your home, an easy and inexpensive text can show you how much radon is in you home's indoor air. There are simple and inexpensive ways to fix your home if the level of radon in the air is 4 picoCuries per liter (pCI/L) of air or higher. For additional information, call your State radon program or call EPA's Radon Hotline (800-SOS-RADON).

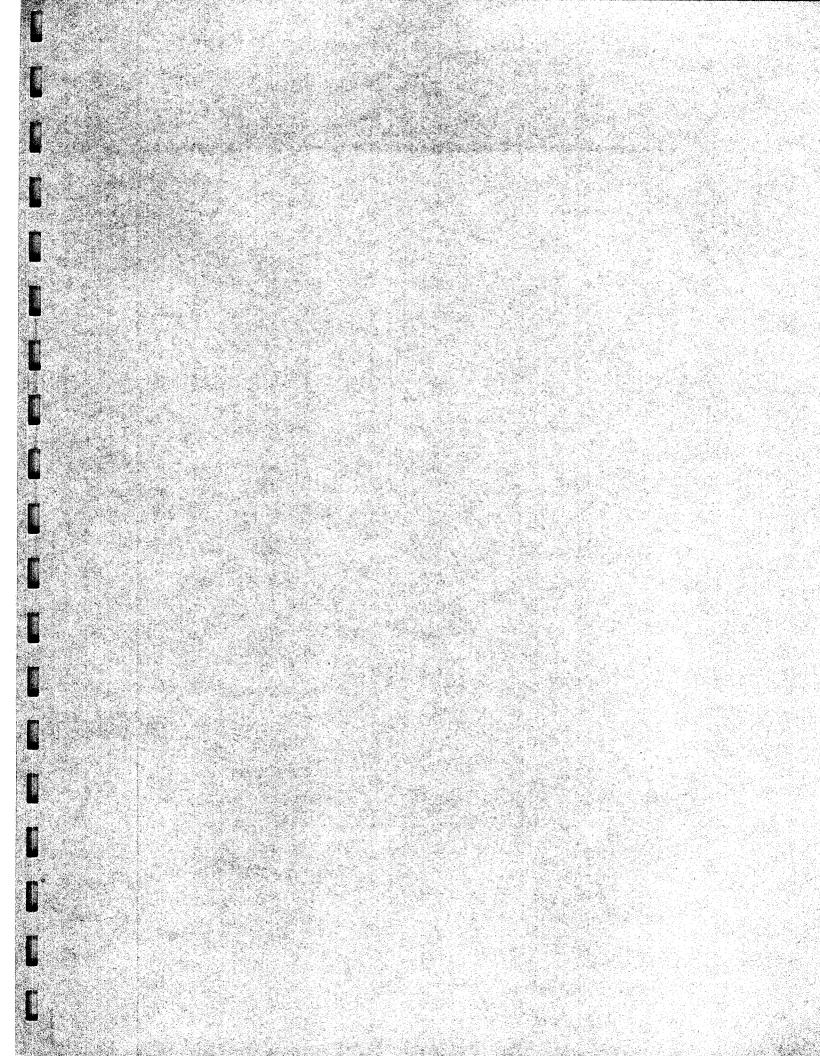
TERMS:

Maximum Contaminant Lavel (MCL): The highest level of a contaminent that is allowed in drinking water. Primary MCLs are set as close to the PHGs (MCLGs) as is economically and technology feasible. Secondary MCLs are set

Maximum Contaminant Level Goal (MCLG): The level of a contaminant in drinking water below which there is no known or expected risk to health. MCLGs are set by the U.S. Environmental Protection Agency. Public Health Goal or PHG: The level of a contaminent in drinking water below which there is no known or expected risk to health. PHGs are set by the California Environmental Protection Agency

Treatment Technique (TT): A required process intended to reduce the level of a contaminant in drinking water.

Regulatory Action Level (AL): The concentration of a contaminant which, if exceeded, triggers treatment or other requirements which a water system must follow. Primary Drinking Water Standard or PDWS: MCLs for contaminents that affect health along with their monitoring and reporting requirements, and water treatment requirements.


= milligrams per liter (parts per million) µg/l = micrograms per liter (parts per billion)

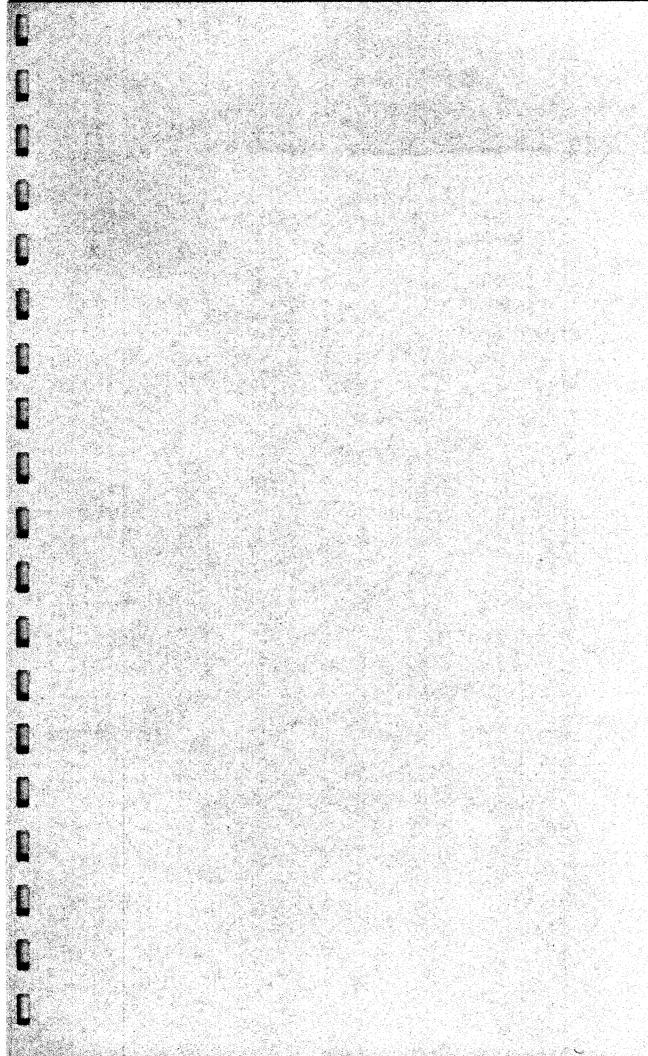
ND = constituent not detected at the reporting limit < = constituent not detected in any samples at the reporting limit

pCi/l = picoCuries per liter NA = constituent not analyzed

Appendix F Statistical Analysis

Appendix F-1 Upper Tolerance Level Calculations

SUMMARY OF UPPER TOLERANCE LEVEL CALCULATIONS
Quarterly Background Data: January 1989 to October 2001
Southern California Chemical

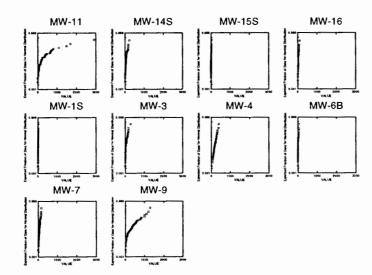

POISSON DISTRIBUTED UPPER TOLERANCE LEVEL

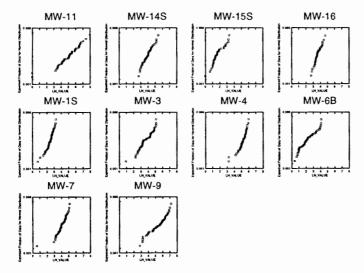
COMPOUND	Hexa Chromium	Total Chromium	Cadmium	Copper	Benzene	Toluene	Ethyl Benzene	Total Xylenes	Trichloroethene
Percent Detected	4.0%	10.0%	2.0%	22.0%	2.0%	8.0%	26.0%	28.0%	NOT
Sample number(n)	50	50	50	50	50	50	50	50	CALC.
Tn	0.5812	0.4301	0.1384	0.7243	16.6550	29.1050	43.7050	76.9550	
2Tn+2	3.16	2.86	2.28	3.45	35.31	60.21	89.41	155.91	
Chi Squared @95% of dist	. 7.81	5.99	5.99	7.81	49.80	79.08	112.02	185.05	
lamda Tn	0.247	0.171	0.136	0.269	17.585	47.615	100.159	288.515	
Two time Lamda Tn	0.494	0.343	0.273	0.539	35.170	95.230	200.318	577.030	
Beta cov. @95%, deg fr.	4	3	3	4	51	120	235	635	
k, from 2k+2 deg fr.	1.00	0.50	0.50	1.00	24.50	59.00	116.50	316.50	

AITCHISON ADJUSTMENT AND CALCULATION OF UPPER TOLERANCE LEVELS

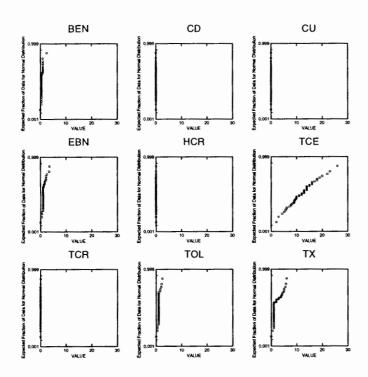
Number of ND(d)	NOT	45	NOT	39	NOT	46	37	36	NO ADJ. REQ.
Number of values(n)	ÇALC.	50	CALC.	50	CALC.	50	50	50	
Mean of det values		0.03962		0.029		1.650	1.977	4.050	
STD of det values		0.040		0.010		0.420	0.738	1.435	
Atch. Adj. mean/mean(1)		0.004		0.006		0.132	0.514	1.134	11.894
Atch. Adj. std./std. (1)		0.017		0.013		0.464	0.949	1.980	5.072
K for Tolerance Limit		2.132		1.812		2.353	1.782	1.771	1.677
Adjusted Tol. Limit		0.039		0.030		1.224	2.206	4.640	
Unadjusted Tol. Limit									20.397

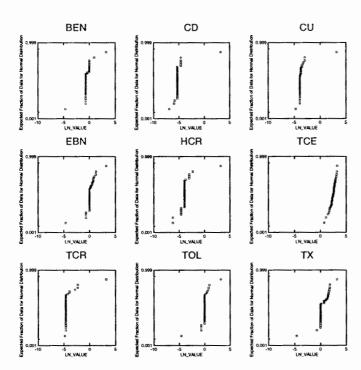
⁽¹⁾ Unadjusted mean and std. used to compute upper tolerance level for TCE

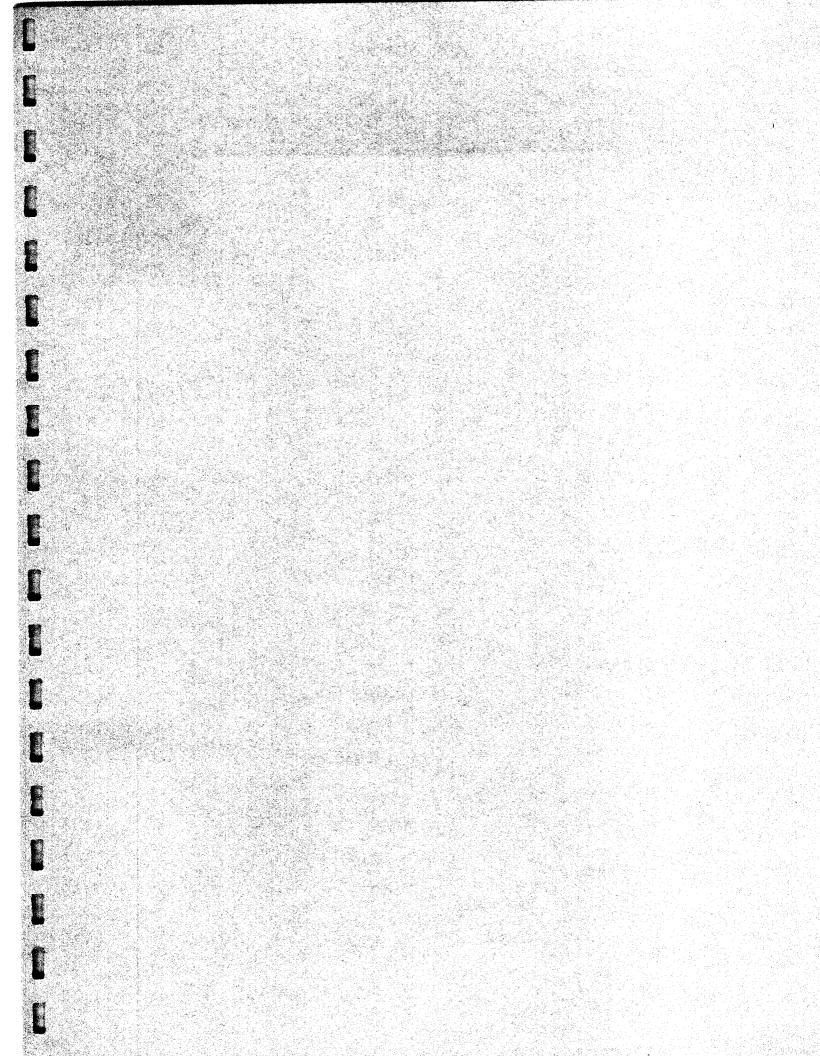

Appendix F-2 Probability Plots


IMPORT successfully completed.

IMPORT successfully completed.


 Data for the following results were selected according to: (PARAM_ID\$= "TCE")


Data for the following results were selected according to: (PARAM_ID\$= "TCE")



Data for the following results were selected according to: (WELL\$= "MW-1S")

Data for the following results were selected according to: (WELL\$= "MW-1S")

Appendix F-3 Shapiro-Wilk Normality Tests

				Normal Data	1	Log Dafa	
Well	Param_id	Value	Ln_value	p value	Normal?	p value	Log Normal?
MW-11	TCE	1	0				
MW-11	TCE	1	0				
MW-11	TCE	29	3.3673				
MW-11	TCE	33	3.4965				
MW-11	TCE	34	3.5264				
MW-11	TCE	35	3.5553				
MW-11	TCE	39	3.6636				
MW-11	TCE	46	3.8286				
MW-11	TCE	59	4.0775				
MW-11	TCE	61	4.1109				
MW-11	TCE	63	4.1431				
MW-11	TCE	65	4.1744				
MW-11	TCE	70	4.2485				
MW-11	TCE	80	4.382				
MW-11	TCE	85	4.4427				
MW-11	TCE	86	4.4543				
MW-11	TCE	110	4.7005				
MW-11	TCE	150	5.0106				
MW-11	TCE	160	5.0752				
MW-11	TCE	160	5.0752				
MW-11	TCE	180	5.193				
MW-11	TCE	190	5.247				
MW-11	TCE	230	5.4381				
MW-11	TCE	360	5.88				
MW-11	TCE	660	6.4922398				
MW-11	TCE	74	4.3040651				
MW-11	TCE	140	4.9416424				
MW-11	TCE	180	5.1929569				
MW-11	TCE	620	6.4297195				
MW-11	TCE	240	5.4806389				
MW-11	TCE	220	5.3936275				
MW-11	TCE	250	5.5214609				
MW-11	TCE	160	5.0751738				
MW-11	TCE	370	5.913503				
MW-11	TCE	240	5.4806389				
MW-11	TCE	350	5.8579332				
MW-11	TCE	390	5.9661467				
MW-11	TCE	180	5.1929569				
MW-11	TCE	150	5.0106353				
MW-11	TCE	430	3.2188758				
MW-11	TCE	690	6.5366916				
MW-11	TCE	480	6.1737861				
MW-11	TCE	740	6.6066502				
MW-11	TCE	650					
MW-11	TCE	820	6.7093043				
MW-11	TCE	1100	7.0030655				
MW-11	TCE	2900	7.972466				
MW-11	TCE	1700					

				Normal Data		Log Data	
Well	Param_id	Value	Ln_value	p value	Normal?	p value	Log Normal?
MW-11	TCE	400	5.9914645				
MW-11	TCE	1500	7.3132204	6.09178E-10	no	0.001953	no

				Normal Data	Ī	Log Dafa	
Weli	Param_id	Value	Ln_value	p value	Normal?	p value	Log Normal?
MW-14S	TCE	15	2.7081				
MW-14S	TCE	18	2.8904				
MW-14S	TCE	21	3.0445				
MW-14S	TCE	25	3.2189				
MW-14S	TCE	25	3.2189				
MW-14S	TCE	29	3.3673				
MW-14S	TCE	44	3.7842				
MW-14S	TCE	55	4.0073				
MW-14S	TCE	56	4.0254				
MW-14S	TCE	56	4.0254				
MW-14S	TCE	58	4.06				
MW-14S	TCE	59	4.0775				
MW-14S	TCE	71	4.2627				
MW-14S	TCE	81	4.3944				
MW-14S	TCE	84	4.4308				
MW-14S	TCE	108	4.6821				
MW-14S	TCE	180	5.193				
MW-14S	TCE	20	2.9957323				
MW-14S	TCE	22	3.0910425				
MW-14S	TCE	35	3.5553481				
MW-14S	TCE	42	3.7376696				
MW-14S	TCE	51	3.9318256				
MW-14S	TCE	37	3.6109179				
MW-14S	TCE	61	4.1108739				
MW-14S	TCE	90	4.4998097				
MW-14S	TCE	45	3.8066625				
MW-14S	TCE	35	3.5553481				
MW-14S	TCE	57	4.0430513				
MW-14S	TCE	50	3.912023				
MW-14S	TCE	38	3.6375862				
MW-14S	TCE	18	2.8903718				
MW-14S	TCE	62	3.2188758				
MW-14S	TCE	98	4.5849675				
MW-148	TCE	84	4.4308168				
MW-14S	TCE	74	4.3040651				
MW-14S	TCE	180	5.1929569				
MW-14S	TCE	230	5.4380793				
MW-14S	TCE	60	4.0943446				
MW-14S	TCE	170	5.1357984				
MW-14S	TCE	130	4.8675345				
MW-14S	TCE	35	3.5553481				
MW-14S	TCE	170	5.1357984	1.30583E-05	no	0.406639	yes

				Normal Data	-	Log Data	
Well	Param_id	Value	Ln_value	p value	Normal?	p value	Log Normal?
MW-15S	TCE	1	0				
MW-15S	TCE	1.9	0.6419				
MW-15S	TCE	2.1	0.7419				
MW-15S	TCE	2.4	0.8755				
MW-158	TCE	2.9	1.0647				
MW-15S	TCE	3.1	1.1314				
MW-15S	TCE	3.2	1.1632				
MW-15S	TCE	4.1	1.411				
MW-15S	TCE	4.6	1.5261				
MW-15S	TCE	6	1.79				
MW-15S	TCE	9	2.1972				
MW-15S	TCE	13	2.5649				
MW-15S	TCE	13	2.5649				
MW-15S	TCE	15	2.7081				
MW-15S	TCE	17	2.8332				
MW-15S	TCE	21	3.0445				
MW-15S	TCE	28	3.3322				
MW-15S	TCE	3.7	1.3083328				
MW-158	TCE	2.8	1.0296194				
MW-15S	TCE	5.2	1.6486586				
MW-15S	TCE	3.9	1.3609766				
MW-15S	TCE	3.8	1.3350011				
MW-15S	TCE	2.8	1.0296194				
MW-15S	TCE	3.2	1.1631508				
MW-15S	TCE	5.3	1.6677068				
MW-15S	TCE	5.1	1.6292405				
MW-15S	TCE	3.3	1.1939225				
MW-15S	TCE	4.1	1.410987				
MW-158	TCE	5.2	1.6486586				
MW-15S	TCE	5	1.6094379				
MW-15S	TCE	3.1	1.1314021				
MW-15S	TCE	3.4	1.2237754				
MW-15S	TCE	3.9	3.2188758				
MW-15S	TCE	7					
MW-15S	TCE		1.4350845				
MW-15S	TCE		1.3609766				
MW-15S	TCE	6.7					
MW-15S	TCE		3.2188758				
MW-15S	TCE	.17	2.8332133				
MW-15S	TCE	6.7					
MW-15S	TCE		1.0986123				
MW-15S	TCE	5.1					
MW-15S	TCE	2.8			no	0.007697	no

				Normal Data	Normal Data		
Well	Param_id	Value	Ln_value	p value	Normal?	p value	Log Normal?
MW-16	TCE	15	2.7081				
MW-16	TCE	22	3.091				
MW-16	TCE	24	3.1781				
MW-16	TCE	35	3.5553				
MW-16	TCE	37	3.6109				
MW-16	TCE	42	3.7377				
MW-16	TCE	51	3.9318				
MW-16	TCE	52	3.9512				
MW-16	TCE	72	4.2767				
MW-16	TCE	76	4.3307				
MW-16	TCE	91	4.51				
MW-16	TCE	17	2.8332133				
MW-16	TCE	34	3.5263605				
MW-16	TCE	67	4.2046926				
MW-16	TCE	60	4.0943446				
MW-16	TCE	26	3.2580965				
MW-16	TCE	36	3.5835189				
MW-16	TCE	110	4.7004804				
MW-16	TCE	73	4.2904594				
MW-16	TCE	32	3.4657359				
MW-16	TCE	31	3.4339872				
MW-16	TCE	30	3.4011974				
MW-16	TCE	53	3.9702919				
MW-16	TCE	29	3.3672958				
MW-16	TCE	29	3.3672958				
MW-16	TCE	28	3.3322045				
MW-16	TCE	58	3.2188758				
MW-16	TCE	36	3.5835189				
MW-16	TCE	39	3.6635616				
MW-16	TCE	29	3.3672958				
MW-16	TCE	42	3.7376696				
MW-16	TCE	18	2.8903718				
MW-16	TCE	26	3.2580965				
MW-16	TCE	36	3.5835189				
MW-16	TCE	36					
MW-16	TCE	26	3.2580965				
MW-16	TCE	34	3.5263605	0.000408421	no	0.333614	yes

				Normal Data		Log Data	
Well	Param_id	Value	Ln_value	p value	Normal?	p value	Log Normal?
MW-3	TCE	10	2.3026				
MW-3	TCE	12	2.4849				
MW-3	TCE	15	2.7081				
MW-3	TCE	16	2.7726				
MW-3	TCE	17	2.8332				
MW-3	TCE	25	3.2189				
MW-3	TCE	26	3.2581				
MW-3	TCE	27	3.2958				
MW-3	TCE	28	3.3322				
MW-3	TCE	38	3.6376				
MW-3	TCE	65	4.1744				
MW-3	TCE	71	4.2627				
MW-3	TCE	74	4.3041				
MW-3	TCE	74	4.3041				
MW-3	TCE	76	4.33				
MW-3	TCE	76	4.3307				
MW-3	TCE	76	4.3307				
MW-3	TCE	84	4.4308				
MW-3	TCE	100	4.6052				
MW-3	TCE	110	4.7005				
MW-3	TCE	120	4.7875				
MW-3	TCE	130	4.8675				
MW-3	TCE	130	4.8675				
MW-3	TCE	130	4.8675				
MW-3	TCE	72	4.2766661				
MW-3	TCE	57	4.0430513				
MW-3	TCE	9.5	2.2512918				
MW-3	TCE	30	3.4011974				
MW-3	TCE	26	3.2580965				
MW-3	TCE	46	3.8286414				
MW-3	TCE	17	2.8332133				
MW-3	TCE	21	3.0445224				
MW-3	TCE	28	3.3322045				
MW-3	TCE		2.5649494				
MW-3	TCE	13	2.5649494				
MW-3	TCE	24	3.1780538				
MW-3	TCE	25	3.2188758				
MW-3	TCE	18	2.8903718				
MW-3	TCE	25	3.2188758				
MW-3	TCE	24	3.2188758				
MW-3	TCE	26	3.2580965				
MW-3	TCE	21	3.0445224				
MW-3	TCE	43					
MW-3	TCE		5.1357984				
MW-3	TCE	170					
MW-3	TCE		5.1357984				
MW-3	TCE		0.9162907				
MW-3	TCE		5.0106353				

				Normal Data		Log Data	
Well	Param_id	Value	Ln_value	p value	Normal?	p value	Log Normal?
MW-3	TCE	41	3.7135721				
MW-3	TCE	290	5.6698809	1.2401E-06	no	0.194455	yes

				Normal Data	1	Log Data	
Well	Param_id	Value	Ln_value	p value	Normal?	p value	Log Normal?
MW-4	TCE	25	3.2189				
MW-4	TCE	100	4.6052				
MW-4	TCE	120	4.7875				
MW-4	TCE	130	4.8675				
MW-4	TCE	170	5.1358				
MW-4	TCE	180	5.193				
MW-4	TCE	190	5.247				
MW-4	TCE	190	5.247				
MW-4	TCE	220	5.3936				
MW-4	TCE	230	5.4381				
MW-4	TCE	250	5.5215				
MW-4	TCE	250	5.5215				
MW-4	TCE	250	5.5215				
MW-4	TCE	250	5.5215				
MW-4	TCE	280	5.6348				
MW-4	TCE	280	5.6348				
MW-4	TCE	280	5.6348				
MW-4	TCE	280	5.6348				
MW-4	TCE	290	5.6699				
MW-4	TCE	290	5.6699				
MW-4	TCE	320	5.7683				
MW-4	TCE	340	5.8289				
MW-4	TCE	390	5.96				
MW-4	TCE	400	5.9915				
MW-4	TCE	190	5.2470241				
MW-4	TCE	67	4.2046926				
MW-4	TCE	90	4.4998097				
MW-4	TCE	150	5.0106353				
MW-4	TCE	160	5.0751738				
MW-4	TCE	130	4.8675345				
MW-4	TCE	140	4.9416424				
MW-4	TCE	310	5.7365723				
MW-4	TCE	330	5.7990927				
MW-4	TCE	150	5.0106353				
MW-4	TCE	150	5.0106353				
MW-4	TCE	230	5.4380793				
MW-4	TCE	180	5.1929569				
MW-4	TCE	92	4.5217886				
MW-4	TCE	120	4.7874917				
MW-4	TCE	120	3.2188758				
MW-4	TCE	260	5.5606816				
MW-4	TCE	190	5.2470241				
MW-4	TCE	140	4.9416424				
MW-4	TCE	210	5.3471075				
MW-4	TCE	160	5.0751738				
MW-4	TCE	240					
MW-4	TCE	170					
MW-4	TCE		5.0106353		1		

				Normal Data		Log Data	
Well	Param_id	Value	Ln_value	p value	Normal?	p value	Log Normal?
MW-4	TCE	75	4.3174881				
MW-4	TCE	220	5.3936275				
MW-4	TCE	170	5.1357984	0.716481685	yes	5.45E-05	no

				Normal Data		Log Dafa	T
Well	Param_id	Value	Ln_value	p value	Normal?	p value	Log Normal?
MW-6B	TCE	1.5	0.41				
MW-6B	TCE	2	0.6931				
MW-6B	TCE	2.6	0.9555				
MW-6B	TCE	2.7	0.9933				
MW-6B	TCE	2.7	0.9933				
MW-6B	TCE	2.9	1.0647				
MW-6B	TCE	5.9	1.775				
MW-6B	TCE	6.9	1.9315				
MW-6B	TCE	9.3	2.23				
MW-6B	TCE	10	2.3026				
MW-6B	TCE	19	2.9444				
MW-6B	TCE	29	3.3673				
MW-6B	TCE	29	3.3673		107		
MW-6B	TCE	37	3.6109				
MW-6B	TCE	46	3.8286				
MW-6B	TCE	51	3.9318				
MW-6B	TCE	52	3.9512				
MW-6B	TCE	57	4.0431				
MW-6B	TCE	59	4.0775				
MW-6B	TCE	61	4.1109				
MW-6B	TCE	8.6					
MW-6B	TCE	2.3					
MW-6B	TCE	8.8					
MW-6B	TCE	2.6	0.9555114				
MW-6B	TCE	14	2.6390573				
MW-6B	TCE	2.9	1.0647107				
MW-6B	TCE	2.3	0.8329091				
MW-6B	TCE	6.1	1.8082888				
MW-6B	TCE	5	1.6094379				
MW-6B	TCE	5.2	1.6486586				
MW-6B	TCE	6.6	1.8870696				
MW-6B	TCE	6.4	1.856298				
MW-6B	TCE	17	2.8332133				
MW-6B	TCE	7.7	2.0412203				
MW-6B	TCE	4.3	1.458615				
MW-6B	TCE	9.9	3.2188758				
MW-6B	TCE	17					
MW-6B	TCE	31	3.4339872				
MW-6B	TCE	8.2	2.1041342				
MW-6B	TCE	12	2.4849066				
MW-6B	TCE	13	2.5649494				
MW-6B	TCE	7	1.9459101				
MW-6B	TCE	9.2					
MW-6B	TCE		1,7749524				
MW-6B	TCE	3.7					
MW-6B	TCE	4.6			no	0.046791	no

				Normal Data		Log Data	
Well	Param_id	Value	Ln_value	p value	Normal?	p value	Log Normal?
MW-7	TCE	1.8	0.5878				
MW-7	TCE	19	2.9444				
MW-7	TCE	23	3.1355				
MW-7	TCE	25	3.2189				
MW-7	TCE	30	3.4012				
MW-7	TCE	34	3.5264				
MW-7	TCE	35	3.5553				
MW-7	TCE	39	3.6636				
MW-7	TCE	43	3.7612				
MW-7	TCE	44	3.7842				
MW-7	TCE	44	3.7842				
MW-7	TCE	46	3.8286				
MW-7	TCE	47	3.8501				
MW-7	TCE	53	3.9703				
MW-7	TCE	53	3.9703				
MW-7	TCE	53	3.9703				
MW-7	TCE	54	3.989				
MW-7	TCE	55	4.0073				
MW-7	TCE	73	4.2905				
MW-7	TCE	96	4.5643				
MW-7	TCE	98	4.58				
MW-7	TCE	98	4.585				
MW-7	TCE	120	4.7875				
MW-7	TCE	140	4.9416				
MW-7	TCE	170	5.1357984				
MW-7	TCE	26	3.2580965				
MW-7	TCE	53	3.9702919				
MW-7	TCE	98	4.5849675				
MW-7	TCE	85	4.4426513				
MW-7	TCE	37	3.6109179				
MW-7	TCE	87	4.4659081				
MW-7	TCE	150	5.0106353				
MW-7	TCE	95	4.5538769				
MW-7	TCE	63	4.1431347		1		
MW-7	TCE	54	3.988984				
MW-7	TCE	85	4.4426513				
MW-7	TCE	97	4.574711				
MW-7	TCE	23	3.1354942				
MW-7	TCE	53	3.9702919				
MW-7	TCE	88	3.2188758				
MW-7	TCE	160	5.0751738				
MW-7	TCE	80	4.3820266				
MW-7	TCE	65	4.1743873				
MW-7	TCE	130	4.8675345				
MW-7	TCE	47	3.8501476		1		
MW-7	TCE	48					
MW-7	TCE		4.7004804				
MW-7	TCE	78					

				Normal Data		Log Data	
Well	Param_id	Value	Ln_value	p value	Normal?	p value	Log Normal?
MW-7	TCE	84	4.4308168				
MW-7	TCE	160	5.0751738	0.007658742	no	2.62E-05	no

	T			Normal Data		Log Data	
Well	Param_id	Value	Ln_value	p value	Normal?	p value	Log Normal?
MW-9	TCE	17	2.8332				
MW-9	TCE	24	3.1781				
MW-9	TCE	26	3.2581				
MW-9	TCE	26	3.2581				
MW-9	TCE	41	3.7136				
MW-9	TCE	45	3.8067				
MW-9	TCE	52	3.9512				
MW-9	TCE	55	4.0073				
MW-9	TCE	57	4.0431				
MW-9	TCE	64	4.1589				
MW-9	TCE	100	4.6052				
MW-9	TCE	100	4.6052				
MW-9	TCE	110	4.7005				
MW-9	TCE	110	4.7005				
MW-9	TCE	120	4.7875				
MW-9	TCE	150	5.0106				
MW-9	TCE	200	5.2983				
MW-9	TCE	230	5.4381				
MW-9	TCE	270	5.5984				
MW-9	TCE	350	5.85				
MW-9	TCE	390	5.9661				
MW-9	TCE	1000	6.9078				
MW-9	TCE	1000	6.9078				
MW-9	TCE	1100	7.0031				
MW-9	TCE	310	5.7365723				
MW-9	TCE	670	6.5072777				
MW-9	TCE	540	6.2915691				
MW-9	TCE	320	5.768321				
MW-9	TCE	500	6.2146081				
MW-9	TCE	580	6.3630281				
MW-9	TCE	570	6.3456364				
MW-9	TCE	470	6.1527327				
MW-9	TCE	400	5.9914645				
MW-9	TCE	770	6.6463905				
MW-9	TCE	850	6.7452363				
MW-9	TCE	600	6.3969297				
MW-9	TCE	270	5.598422				
MW-9	TCE	390	5.9661467				
MW-9	TCE	1300	7.1701195				
MW-9	TCE	1200					
MW-9	TCE	550	6.3099183				
MW-9	TCE	350	5.8579332				
MW-9	TCE	810	6.6970342				
MW-9	TCE	280	5.6347896				
MW-9	TCE	170	5.1357984				
MW-9	TCE	370					
MW-9	TCE		5.0751738				
MW-9	TCE		5.2983174				

				Normal Data		Log Data	
Well	Param_id	Value	Ln_value	p value	Normal?	p value	Log Normal?
MW-9	TCE	120	4.7874917				
MW-9	TCE	440	6.0867747				
MW-9	TCE	340	5.8289456	9.82453E-05	no	0.021943	no

				Normal Data		Log Data	
Well	Param_id	Value	Ln_value	p value	Normal?	p value	Log Normal?
MW-1S	BEN	0.01	-4.6052				
MW-1S	BEN	0.5	-0.6931				
MW-1S	BEN	0.5	-0.6931				
MW-1S	BEN	0.5	-0.6931				
MW-1S	BEN	0.5	-0.6931				
MW-1S	BEN	0.5	-0.6931				
MW-1S	BEN	0.5	-0.6931				
MW-1S	BEN	0.5	-0.6931				
MW-1S	BEN	0.5	-0.6931				
MW-1S	BEN	0.5	-0.6931				
MW-1S	BEN	0.5	-0.6931				
MW-1S	BEN	0.5	-0.6931				
MW-1S	BEN	0.5	-0.6931				
MW-1S	BEN	0.5	-0.6931				
MW-1S	BEN	0.5	-0.6931				
MW-1S	BEN	0.5	-0.6931				
MW-1S	BEN	0.5	-0.6931				
MW-1S	BEN	0.5	-0.6931				
MW-1S	BEN	0.5	-0.69				
MW-1S	BEN	0.7	-0.3567				
MW-1S	BEN	0.7	-0.3567				
MW-1S	BEN	0.95	-0.0513				
MW-1S	BEN	1	0				
MW-1S	BEN	2.5	0.9163				
MW-1S	BEN	0.5	-0.693147				
MW-1S	BEN	0.5	-0.693147				
MW-1S	BEN	0.5	-0.693147				
MW-1S	BEN	0.5	-0.693147				
MW-1S	BEN	0.5	-0.693147				
MW-1S	BEN	0.5	-0.693147				
MW-1S	BEN	0.5	-0.693147				
MW-1S	BEN	0.5	-0.693147				
MW-1S	BEN	0.5	-0.693147				
MW-1S	BEN	0.5	-0.693147				
MW-1S	BEN	0.5	-0.693147				
MW-1S	BEN	0.5	-0.693147				
MW-1S	BEN	0.5	-0.693147				
MW-1S	BEN	0.5	-0.693147				
MW-1S	BEN	0.5	-0.693147				
MW-1S	BEN	0.5	3.2188758				
MW-1S	BEN	0.5	-0.693147				
MW-1S	BEN	1	0				
MW-1S	BEN	1	0				
MW-1S	BEN	1	0				
MW-1S	BEN	1	0				
MW-1S	BEN	1	0				
MW-1S	BEN	1	0				
MW-1S	BEN	1	o				

				Normal Data		Log Data	
Well	Param_id	Value	Ln_value	p value	Normal?	p value	Log Normal?
MW-1S	BEN	1	0				
MW-1S	BEN	1	0	5.68028E-11	no	1.69E-11	no

[Normal Data		Log Data	[
Well	Param_id	Value	Ln value	p value	Normal?	p value	Log Normal?
MW-1S	CD	0.003	-5.9145			<u> </u>	
MW-1S	CD	0.003	-5.8091				
MW-1S	CD	0.005	-5.2983				
MW-1S	CD	0.005	-5.2983				
MW-1S	CD	0.005	-5.2983				
MW-1S	CD	0.005	-5.2983				
MW-1S	CD	0.005	-5.2983				
MW-1S	CD	0.005	-5.2983				
MW-1S	CD	0.005	-5.2983				
MW-1S	CD	0.005	-5.2983				
MW-1S	CD	0.005	-5.2983				
MW-1S	CD	0.005	-5.2983				
MW-1S	CD	0.005	-5.2983				
MW-1S	CD	0.005	-5.2983				
MW-1S	CD	0.005	-5.2983				
MW-1S	CD	0.005	-5.2983				
MW-1S	CD	0.005	-5.2983				
MW-1S	CD	0.005	-5.2983				
MW-1S	CD	0.005	-5.29				
MW-1S	CD	0.01	-4.6052				
MW-1S	CD	0.01	-4.6052				
MW-1S	CD	0.01	-4.6052				
MW-1S	CD	0.01	-4.6052				
MW-1S	CD	0.01	-4.6052				
MW-1S	CD	0.005	-5.298317				
MW-1S	CD	0.001	-6.907755				
MW-1S	CD	0.005	-5.298317				
MW-1S	CD	0.005	-5.298317				
MW-1S	CD	0.005	-5.298317				
MW-1S	CD	0.005	-5.298317				
MW-1S	CD	0.005	-5.298317				
MW-1S	CD	0.005	-5.298317				
MW-1S	CD	0.005					
MW-1S	CD	0.005	-5.298317				
MW-1S	CD	0.005					
MW-1S	CD	0.005					
MW-1S	CD	0.005					
MW-1S	CD	0.005					
MW-1S	CD	0.005					
MW-1S	CD	0.005					
MW-1S	CD	0.005					
MW-1S	CD	0.005					
MW-1S	CD	0.005					
MW-1S	CD	0.005	-5.298317				
MW-1S	CD	0.005	-5.298317				
MW-1S	CD	0.005					
MW-1S	CD	0.005					
MW-1S	CD	0.005	-5.298317				

				Normal Data		Log Data	
Well	Param_id	Value	Ln_value	p value	Normal?	p value	Log Normal?
MW-1S	CD	0.005	-5.298317				
MW-1S	CD	0.005	-5.298317	1.6153E-11	no	2.52E-14	no

				Normal Data		Log Data	1
Well	Param_id	Value	Ln_value	p value	Normal?	p value	Log Normal?
MW-1S	CU	0.009	-4.7105				
MW-1S	CU	0.02	-3.912				
MW-1S	CU	0.02	-3.912				
MW-1S	CU	0.02	-3.912				
MW-1S	CU	0.02	-3.912				
MW-1S	CU	0.02	-3.912				
MW-1S	CU	0.02	-3.912				
MW-1S	CU	0.02	-3.912				
MW-1S	CU	0.02	-3.912				
MW-1S	CU	0.02	-3.912				
MW-1S	CU	0.02	-3.912				
MW-1S	CU	0.02	-3.912				
MW-1S	CU	0.02	-3.912				
MW-1S	CU	0.02	-3.912				
MW-1S	CU	0.02	-3.912				
MW-1S	CU	0.02	-3.912				
MW-1S	CU	0.02	-3.912				
MW-1S	CU	0.02	-3.91				
MW-1S	CU	0.023	-3.7723				
MW-1S	CU	0.03	-3.5066				
MW-1S	CU	0.03	-3.5066				
MW-1S	CU	0.035	-3.3524				
MW-1S	CU	0.04	-3.2189				
MW-1S	CU	0.05	-2.9957				
MW-1S	CU	0.02	-3.912023				
MW-1S	CU	0.02	-3.912023				
MW-1S	CU	0.02	-3.912023				
MW-1S	CU	0.02	-3.912023				
MW-1S	CU	0.02	-3.912023				
MW-1S	CU	0.02	-3.912023				
MW-1S	CU	0.02	-3.912023				
MW-1S	CU	0.02	-3.912023				
MW-1S	CU	0.022	-3.816713				
MW-1S	CU	0.02	-3.912023				
MW-1S	CU	0.02	-3.912023				
MW-1S	CU	0.023	-3.772261				
MW-1S	CU	0.02	-3.912023				
MW-1S	CU	0.021	-3.863233				
MW-1S	CU	0.02	-3.912023				
MW-1S	CU	0.02	3.2188758				
MW-1S	CU	0.02	-3.912023				
MW-1S	CU	0.025	-3.688879				
MW-1S	CU	0.052	-2.956512				
MW-1S	CU	0.025	-3.688879				
MW-1S	CU	0.025	-3.688879				
MW-1S	CU	0.025		,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,			
MW-1S	CU	0.025					
MW-1S	CU	0.025					

				Normal Data		Log Data	
Well	Param_id	Value	Ln_value	p value	Normal?	p value	Log Normal?
MW-1S	CU	0.025	-3.688879				
MW-1S	CU	0.025	-3.688879	2.55713E-10	no	3.43E-14	no

<u> </u>		1	T	Normal Data	ıT	Log Dafa	
Well	Param_id	Value	Ln_value	p value	Normal?	p value	Log Normal?
MW-1S	EBN	0.01	-4.6052				
MW-1S	EBN	0.5	-0.6931				
MW-1S	EBN	0.5	-0.6931				
MW-1S	EBN	0.5	-0.6931				
MW-1S	EBN	1	0				
MW-1S	EBN	1	0				
MW-1S	EBN	1	0				
MW-1S	EBN	1	0				
MW-1S	EBN	1	0				
MW-1S	EBN	1	0				
MW-1S	EBN	1	0				
MW-1S	EBN	1	0				
MW-1S	EBN	1	0				
MW-1S	EBN	1	0				1
MW-1S	EBN	1	0				
MW-1S	EBN	1	0				
MW-1S	EBN	1	0				
MW-1S	EBN	1	0				
MW-1S	EBN	1	0				
MW-1S	EBN	1.2	0.1823				
MW-1S	EBN	1.3	0.2624				
MW-1S	EBN	1.7	0.5306				
MW-1S	EBN	2.2	0.7885				
MW-1S	EBN	2.5	0.9163				
MW-1S	EBN	1	0				
MW-1S	EBN	1.3	0.2623643				
MW-1S	EBN	3.5	1.252763				
MW-1S	EBN	1.7	0.5306283				
MW-1S	EBN	1.7	0.5306283				
MW-1S	EBN	3.4	1.2237754				
MW-1S	EBN	2.2	0.7884574				
MW-1S	EBN	2.1	0.7419373				
MW-1S	EBN	1	0				
MW-1S	EBN	1.4	0.3364722				
MW-1S	EBN	1	0				
MW-1S	EBN	1	0				
MW-1S	EBN	1	0				
MW-1S	EBN	1	0				
MW-1S	EBN	1	0				
MW-1S	EBN	1	3.2188758				
MW-1S	EBN	2	0.6931472				
MW-1S	EBN	1	0				
MW-1S	EBN	1	0				
MW-1S	EBN	1	0				
MW-1S	EBN	1	0				
MW-1S	EBN	1	0				
MW-1S	EBN	1	0				
MW-1S	EBN	1	0				

				Normal Data		Log Data	
Well	Param_id	Value	Ln_value	p value	Normal?	p value	Log Normal?
MW-1S	EBN	1	0				
MW-1S	EBN	1	0	1.38096E-08	no	1.36E-10	no

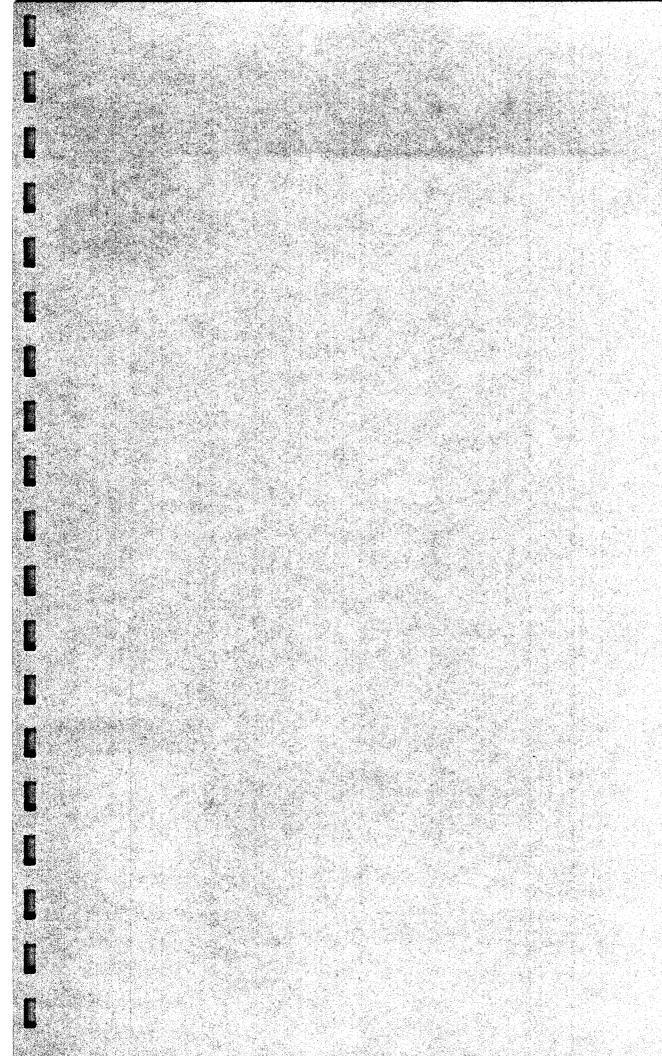
				Normal Data	īĪ.	Log Data	T
Well	Param_id	Value	Ln_value	p value	Normal?	p value	Log Normal?
MW-1S	HCR	0.01	-4.6052	•			
MW-1S	HCR	0.02	-3.912				
MW-1S	HCR	0.02	-3.912	1 11			
MW-1S	HCR	0.02	-3.912				
MW-1S	HCR	0.02	-3.912				
MW-1S	HCR	0.02	-3.912				
MW-1S	HCR	0.02	-3.912				
MW-1S	HCR	0.02	-3.912				
MW-1S	HCR	0.02	-3.912				
MW-1S	HCR	0.02	-3.912				
MW-1S	HCR	0.02	-3.912				
MW-1S	HCR	0.02	-3.912				
MW-1S	HCR	0.02	-3.912				
MW-1S	HCR	0.02	-3.912				
MW-1S	HCR	0.02	-3.912				
MW-1S	HCR	0.02	-3.912				
MW-1S	HCR	0.02	-3.912				
MW-1S	HCR	0.02	-3.912				
MW-1S	HCR	0.02	-3.912				
MW-1S	HCR	0.02	-3.91				
MW-1S	HCR	0.05	-2.9957				
MW-1S	HCR	0.05	-2.9957				
MW-1S	HCR	0.05	-2.9957				
MW-1S	HCR	0.1	-2.3026				
MW-1S	HCR	0.02	-3.912023				
MW-1S	HCR	0.02	-3.912023				
MW-1S	HCR	0.02	-3.912023				
MW-1S	HCR	0.02	-3.912023				
MW-1S	HCR	0.02	-3.912023				
MW-1S	HCR	0.02	-3.912023				
MW-1S	HCR	0.01	-4.60517				
MW-1S	HCR	0.01	-4.60517				
MW-1S	HCR	0.02	-3.912023				
MW-1S	HCR	0.02	-3.912023				
MW-1S	HCR	0.02	-3.912023				
MW-1S	HCR	0.02	-3.912023				
MW-1S	HCR	0.02	-3.912023				
MW-1S	HCR	0.02	-3.912023				
MW-1S	HCR	0.02	-3.912023				
MW-1S	HCR	0.02	3.2188758				
MW-1S	HCR	0.02	-3.912023				
MW-1S	HCR	0.025	-3.688879				
MW-1S	HCR	0.02	-3.912023				
MW-1S	HCR	0.01	-4.60517				
MW-1S	HCR	0.02	-3.912023				
MW-1S	HCR	0.01	-4.60517				
MW-1S	HCR	0.02	-3.912023				
MW-1S	HCR	0.002	-6.214608				

				Normal Data		Log Dafa	
Well	Param_id	Value	Ln_value	p value	Normal?	p value	Log Normal?
MW-1S	HCR	0.002	-6.214608				
MW-1S	HCR	0.006	-5.083206	1.37078E-11	no	5.37E-12	no

				Normal Data		Log Data	
Well	Param_id	Value	Ln_value	p value	Normal?	p value	Log Normal?
MW-1S	TCE	5.7	1.7405				
MW-1S	TCE	7.9	2.0669				
MW-1S	TCE	9.2	2.2192				
MW-1S	TCE	9.3	2.23				
MW-1S	TCE	9.9	2.2925				
MW-1S	TCE	10	2.3026				
MW-1S	TCE	11	2.3979				
MW-1S	TCE	11	2.3979				
MW-1S	TCE	12	2.4849				
MW-1S	TCE	13	2.56				
MW-1S	TCE	13	2.5649				
MW-1S	TCE	13	2.5649				
MW-1S	TCE	14	2.6391				
MW-1S	TCE	14	2.6391				
MW-1S	TCE	14	2.6391				
MW-1S	TCE	16	2.7726				
MW-1S	TCE	17	2.8332				
MW-1S	TCE	18	2.8904				
MW-1S	TCE	18	2.8904				
MW-1S	TCE	19	2.9444				
MW-1S	TCE	20	2.9957				
MW-1S	TCE	22	3.091				
MW-1S	TCE	23	3.1355				
MW-1S	TCE	26	3.2581				
MW-1S	TCE	5.2	1.6486586				
MW-1S	TCE	4.4	1.4816045				
MW-1S	TCE	6.2	1.8245493				
MW-1S	TCE	15	2.7080502				
MW-1S	TCE	8.4	2.1282317				
MW-1S	TCE	2.9	1.0647107				
MW-1S	TCE	9.7	2.2721259				
MW-1S	TCE	16	2.7725887				
MW-1S	TCE	6	1.7917595				
MW-1S	TCE	15	2.7080502				
MW-1S	TCE	14	2.6390573				
MW-1S	TCE	12	2.4849066				
MW-1S	TCE	12	2.4849066				
MW-1S	TCE	14	2.6390573				
MW-1S	TCE	14	2.6390573				
MW-1S	TCE	7.8	3.2188758				
MW-1S	TCE	10	2.3025851				
MW-1S	TCE	7.2	1.974081				
MW-1S	TCE	9.1	2.2082744				
MW-1S	TCE	9.1	2.2082744				
MW-1S	TCE	9.9	2.2925348				
MW-1S	TCE	16	2.7725887				
MW-1S	TCE	8.9					
MW-1S	TCE	13					

				Normal Data		Log Data	
Well	Param_id	Value	Ln_value	p value	Normal?	p value	Log Normal?
MW-1S	TCE	2.1	0.7419373				
MW-1S	TCE	13	2.5649494	0.640187443	yes	0.006246	no

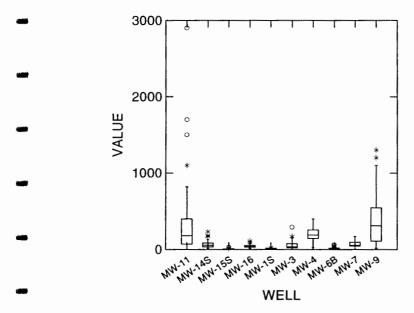
				Normal Data	1	Log Data	
Well	Param_id	Value	Ln_value	p value	Normal?	p value	Log Normal?
MW-1S	TCR	0.008	-4.8159				
MW-1S	TCR	0.01	-4.6052				
MW-1S	TCR	0.01	-4.6052				
MW-1S	TCR	0.01	-4.6052				
MW-1S	TCR	0.01	-4.6052				
MW-1S	TCR	0.01	-4.6052				
MW-1S	TCR	0.01	-4.6052				
MW-1S	TCR	0.01	-4.6052				
MW-1S	TCR	0.01	-4.6052				
MW-1S	TCR	0.01	-4.6052				
MW-1S	TCR	0.01	-4.6052				
MW-1S	TCR	0.01	-4.6052				
MW-1S	TCR	0.01	-4.6052				
MW-1S	TCR	0.01	-4.6052				
MW-1S	TCR	0.01	-4.6052				
MW-1S	TCR	0.01	-4.6052				
MW-1S	TCR	0.01	-4.6052				
MW-1S	TCR	0.01	-4.6052				
MW-1S	TCR	0.01	-2.3				
MW-1S	TCR	0.014	-4.2687				
MW-1S	TCR	0.02	-3.912				
MW-1S	TCR	0.02	-3.912				
MW-1S	TCR	0.06	-2.8134				
MW-1S	TCR	0.1	-2.3026				
MW-1S	TCR	0.01	-4.60517				
MW-1S	TCR	0.01	-4.60517				
MW-1S	TCR	0.01	-4.60517				
MW-1S	TCR	0.01	-4.60517				
MW-1S	TCR	0.01	-4.60517				
MW-1S	TCR	0.01	-4.60517				
MW-1S	TCR	0.01	-4.60517				
MW-1S	TCR	0.01	-4.60517				
MW-1S	TCR	0.01	-4.60517				
MW-1S	TCR	0.01	-4.60517				
MW-1S	TCR	0.01	-4.60517				
MW-1S	TCR	0.01	-4.60517				
MW-1S	TCR	0.01	-4.60517				
MW-1S	TCR	0.01	-4.60517				
MW-1S	TCR	0.01	-4.60517	'			
MW-1S	TCR	0.01	3.2188758				
MW-1S	TCR	0.01	-4.60517				
MW-1S	TCR	0.01	-4.60517				
MW-1S	TCR	0.01	-4.60517				
MW-1S	TCR	0.01	-4.60517				
MW-1S	TCR	0.01	-4.60517	'			
MW-1S	TCR	0.01	-4.60517	'			
MW-1S	TCR	0.01	-4.60517				
MW-1S	TCR	0.01	-4.60517				

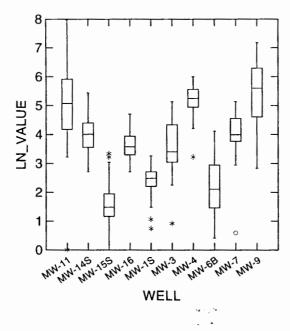

				Normal Data		Log Data	
Well	Param_id	Value	Ln_value	p value	Normal?	p value	Log Normal?
MW-1S	TCR	0.01	-4.60517				
MW-1S	TCR	0.01	-4.60517	1.4755E-14	no	4.84E-14	no

				Normal Data	1	Log Data	
Well	Param_id	Value	Ln_value	p value	Normal?	p value	Log Normal?
MW-1S	TOL	0.01	-4.6052				
MW-1S	TOL	0.5	-0.6931				
MW-1S	TOL	0.5	-0.6931				
MW-1S	TOL	0.5	-0.6931				
MW-1S	TOL	1	0				
MW-1S	TOL	1	0				
MW-1S	TOL	1	0				
MW-1S	TOL	1	0				
MW-1S	TOL	1	0				
MW-1S	TOL	1	0				
MW-1S	TOL	1	0				
MW-1S	TOL	1	0				
MW-1S	TOL	1	0				
MW-1S	TOL	1	. 0				
MW-1S	TOL	1	0				
MW-1S	TOL	1	0				
MW-1S	TOL	1	0				
MW-1S	TOL	1	0				
MW-1S	TOL	1	0				
MW-1S	TOL	1.5	0.4055				
MW-1S	TOL	1.7	0.5306				
MW-1S	TOL	2.2	0.7885				
MW-1S	TOL	2.5	0.9163				
MW-1S	TOL	1	0				
MW-1S	TOL	1	0				
MW-1S	TOL	1.2	0.1823216				
MW-1S	TOL	1	0				
MW-1S	TOL	1	0				
MW-1S	TOL	1	0				
MW-1S	TOL	1	0				
MW-1S	TOL	1	0				
MW-1S	TOL	1	0				
MW-1S	TOL	1	0				
MW-1S	TOL	1	0				
MW-1S	TOL	1	0				
MW-1S	TOL	1	0				
MW-1S	TOL	1	0				
MW-1S	TOL	1	0				
MW-1S	TOL	1	3.2188758				
MW-1S	TOL	2	0.6931472				
MW-1S	TOL	1	0				
MW-1S	TOL	1	0				
MW-1S	TOL	1	0				
MW-1S	TOL	1	0				
MW-1S	TOL	1	0				
MW-1S	TOL	1	0				
MW-1S	TOL	1	0				
MW-1S	TOL	1	0				

				Normal Dafa		Log Data	
Well	Param_id	Value	Ln_value	p value	Normal?	p value	Log Normal?
MW-1S	TOL	1	0	2.65658E-10	no	3.27E-12	no

				Normal Date	a	Log Dafa	T
Well	Param_id	Value	Ln_value	p value	Normal?	p value	Log Normal?
MW-1S	TX	0.01	-4.6052				
MW-1S	TX	0.5	-0.6931				
MW-1S	TX	1	0				
MW-1S	TX	1	0				
MW-1S	TX	1	0				
MW-1S	TX	1	0				
MW-1S	TX	1	0				
MW-1S	TX	1	0				
MW-1S	TX	1	0				
MW-1S	TX	1	0				
MW-1S	TX	1	0				
MW-1S	TX	1	0				
MW-1S	TX	1	0				
MW-1S	TX	1	0				
MW-1S	TX	i	0				
MW-1S	TX	1	0				
MW-1S	TX	1	0				
MW-1S	TX	3	1.0986				
MW-1S	TX	4	1.3863				
MW-1S	TX	4.3	1.4586				
MW-1S	TX	4.3	1.4586				
MW-1S	TX	5	1.6094				
MW-1S	TX	5.6	1.7228				
MW-1S	TX	5.8	1.75				
MW-1S	TX	1	0				
MW-1S	TX	1	0				
MW-1S	TX	6.1	1.8082888				
MW-1S	TX	3.9	1.3609766				
MW-1S	TX	5.1	1.6292405				
MW-1S	TX	4.9	1.5892352				
MW-1S	TX	3.7	1.3083328				
MW-1S	TX		1.0296194				
MW-1S	TX		0.6931472				
MW-1S	TX		0.1823216		-		
MW-1S	TX	1	0				
MW-1S	TX	1	0				
MW-1S	TX	1	0				
MW-1S	TX	1	0				
MW-1S	TX	1	0				
MW-1S	TX	1	3.2188758				
MW-1S	TX	2	0.6931472				
MW-1S	TX	2	0.6931472				
MW-1S	TX	1	0				
MW-1S	TX	2	0.6931472				
MW-1S	TX	1	0.0701472				
MW-1S	TX	i	0				
MW-1S	TX	1	0		-		
MW-1S	TX	1	0				


				Normal Data		Log Data	
Well	Param_id	Value	Ln_value	p value	Normal?	p value	Log Normal?
MW-1S	TX	1	0				
MW-1S	TX	1	0	1.42533E-08	no	1.5E-08	no


Appendix F-4 Test of Variance Box Plots

- IMPORT successfully completed.
- IMPORT successfully completed.
- Data for the following results were selected according to: (PARAM_ID\$= "TCE")
- Data for the following results were selected according to: (PARAM_ID\$= "TCE")
- Data for the following results were selected according to: (PARAM_ID\$= "TCE")

Data for the following results were selected according to: (PARAM_ID\$= "TCE")

			s of the	
				V.
1				
1				
1				
i				
		3		
1				
	. Was a second and a second and a second and a second and a second and a second and a second and a second and a			
1				
1				

Appendix F-5 Parametric ANOVA Results

IMPORT successfully completed.

898 cases and 6 variables processed and saved.

SYSTAT Rectangular file C:\CDM\Oct01\1-11.SYD, created Mon Dec 17, 2001 at 22:19:18, contains variables:

WELL\$ PARAM_ID\$ VALUE LN_VALUE HD_VALUE HD_LN_VALU

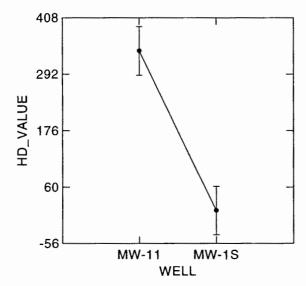
Data for the following results were selected according to: (PARAM_ID\$= "TCE")

Effects coding used for categorical variables in model.

Categorical values encountered during processing are: WELL\$ (2 levels)

MW-11, MW-1S

Error


Dep Var: HD_VALUE N: 100 Multiple R: 0.425 Squared multiple R: 0.180

Analysis of Variance

 Source
 Sum-of-Squares
 df
 Mean-Square
 F-ratio
 P

 WELL\$
 2691584.766
 1 2691584.766
 21.541
 0.000

1.22450E+07 98 124949.371

*** WARNING ***

837 is an outlier 855 is an outlier 10.804) (Studentized Residual = Case (Studentized Residual = 4.204) Case 893 is an outlier (Studentized Residual = 3.500) Case

Durbin-Watson D Statistic First Order Autocorrelation 0.117

COL/

ROW WELL\$

- 1 MW-11
- 2 MW-1S

Using least squares means.

Post Hoc test of HD_VALUE

Using model MSE of 124949.371 with 98 df.

Matrix of pairwise mean differences:

Tukey HSD Multiple Comparisons.

Matrix of pairwise comparison probabilities:

	1	2
1	1.000	
2	0.000	1.000

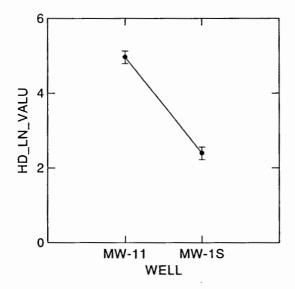
Data for the following results were selected according to:

(PARAM_ID\$= "TCE")

Effects coding used for categorical variables in model.

Categorical values encountered during processing are:

WELL\$ (2 levels) MW-11, MW-1S


Dep Var: HD_LN_VALU N: 100 Multiple R: 0.736 Squared multiple R: 0.542

Analysis of Variance

•	Source	Sum-of-Squares	df	Mean-Square	F-ratio	P
	WELL\$	165.191	1	165.191	115.826	0.000
•	Error	139.768	98	1.426		

Least Squares Means

*** WARNING ***

Case 121 is an outlier (Studentized Residual = -5.434) Case 122 is an outlier (Studentized Residual = -5.434)

Durbin-Watson D Statistic 1.124
First Order Autocorrelation 0.323

_ COL/

ROW WELL\$

- 1 MW-11
- 2 MW-1S
- Using least squares means.

 Post Hoc test of HD_LN_VALU

Using model MSE of 1.426 with 98 df. Matrix of pairwise mean differences:

1 2 1 0.000 2 -2.571 0.000

Tukey HSD Multiple Comparisons. Matrix of pairwise comparison probabilities:

1 2 1 1.000 2 0.000 1.000

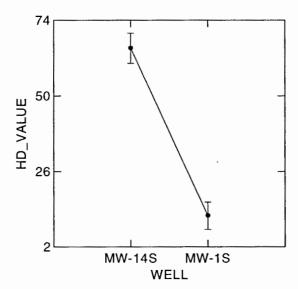
- IMPORT successfully completed.
 - 826 cases and 6 variables processed and saved.

SYSTAT Rectangular file C:\CDM\Oct01\1-14s.SYD, created Mon Dec 17, 2001 at 22:19:24, contains variables:

WELL\$ PARAM_ID\$ VALUE LN_VALUE HD_VALUE HD_LN_VALU

Data for the following results were selected according to: (PARAM_ID\$= "TCE")

Effects coding used for categorical variables in model.


- Categorical values encountered during processing are: WELL\$ (2 levels) MW-14S, MW-1S
- Dep Var: HD_VALUE N: 92 Multiple R: 0.655 Squared multiple R: 0.429

Analysis of Variance

Source Sum-of-Squares df Mean-Square F-ratio P

WELL\$ 64642.748 1 64642.748 67.596 0.000

Error 86068.449 90 956.316


```
*** WARNING ***
```

Case	102 is an outlier	(Studentized Residual =	4.073)
Case	711 is an outlier	(Studentized Residual =	4.073)
Case	765 is an outlier	(Studentized Residual =	3.663)
Case	822 is an outlier	(Studentized Residual =	3.663)

Durbin-Watson D Statistic 1.477
First Order Autocorrelation 0.183

COL/

ROW WELL\$

1 MW-14S 2 MW-1S

Using least squares means.

Post Hoc test of HD_VALUE

Using model MSE of 956.316 with 90 df. Matrix of pairwise mean differences:

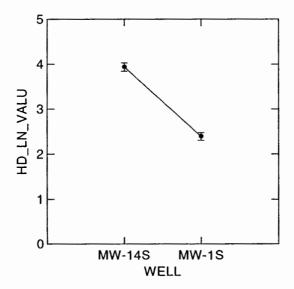
Tukey HSD Multiple Comparisons.

Matrix of pairwise comparison probabilities:

	1	2	
1	1.000		
2	0.000	1.000	

Data for the following results were selected according to: (PARAM_ID\$= "TCE")

Effects coding used for categorical variables in model.


Categorical values encountered during processing are: WELL\$ (2 levels) MW-14S, MW-1S

■ Dep Var: HD_LN_VALU N: 92 Multiple R: 0.794 Squared multiple R: 0.631

Analysis of Variance

Source	Sum-of-Squares	df	Mean-Square	F-ratio	P
WELL\$	54.619	1	54.619	153.769	0.000
Error	31.968	90	0.355		

Least Squares Means

Durbin-Watson D Statistic 1.438
First Order Autocorrelation 0.235
COL/

ROW WELL\$

1 MW-14S

2 MW-1S

Using least squares means. Post Hoc test of HD_LN_VALU

Using model MSE of 0.355 with 90 df. Matrix of pairwise mean differences:

> 1 2 1 0.000 2 -1.547 0.000

Tukey HSD Multiple Comparisons.

Matrix of pairwise comparison probabilities:

IMPORT successfully completed.

- 835 cases and 6 variables processed and saved.
- SYSTAT Rectangular file C:\CDM\Oct01\1-15s.SYD, created Mon Dec 17, 2001 at 22:19:30, contains variables:

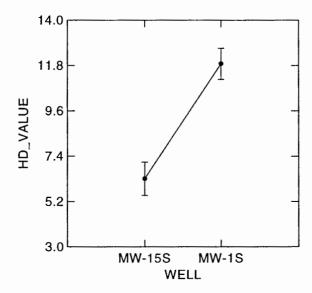
WELL\$ PARAM_ID\$ VALUE LN_VALUE HD_VALUE HD_LN_VALU

Data for the following results were selected according to: (PARAM_ID\$= "TCE")

Effects coding used for categorical variables in model.

Categorical values encountered during processing are:

- WELL\$ (2 levels)
- MW-15S, MW-1S


Dep Var: HD_VALUE N: 93 Multiple R: 0.467 Squared multiple R: 0.218

Analysis of Variance

Source Sum-of-Squares df Mean-Square F-ratio P

WELL\$ 718.962 1 718.962 25.431 0.000

Error 2572.660 91 28.271

*** WARNING ***

102 is an outlier

(Studentized Residual = 4.555)

Durbin-Watson D Statistic

1.003 First Order Autocorrelation 0.490

COL/

ROW WELL\$

- 1 MW-15S
- 2 MW-1s

Using least squares means.

Post Hoc test of HD_VALUE

Using model MSE of 28.271 with 91 df.

Matrix of pairwise mean differences:

0.000 5.577 0.000

Tukey HSD Multiple Comparisons.

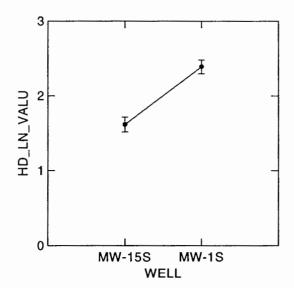
Matrix of pairwise comparison probabilities:

1.000 1 2 0.000 1.000

Data for the following results were selected according to: (PARAM_ID\$= "TCE")

Effects coding used for categorical variables in model.

Categorical values encountered during processing are: WELL\$ (2 levels) $\,$


MW-15S, MW-1S

Dep Var: HD_LN_VALU N: 93 Multiple R: 0.518 Squared multiple R: 0.269

Analysis of Variance

	Source	Sum-of-Squares	df	Mean-Square	F-ratio	P
,	WELL\$	13.852	1	13.852	33.402	0.000
	Error	37.738	91	0.415		

Least Squares Means

*** WARNING ***

Case 86 is an outlier (Studentized Residual = -3.901)

Durbin-Watson D Statistic 0.961 First Order Autocorrelation 0.444

COL/

ROW WELL\$

- 1 MW-15S
- 2 MW-1S

Using least squares means.

Post Hoc test of HD_LN_VALU

Using model MSE of 0.415 with 91 df.

Matrix of pairwise mean differences:

1 2 1 0.000 2 0.774 0.000

Tukey HSD Multiple Comparisons.

Matrix of pairwise comparison probabilities:

IMPORT successfully completed.

781 cases and 6 variables processed and saved.

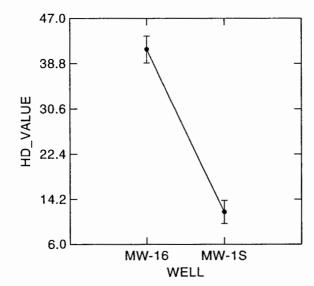
SYSTAT Rectangular file C:\CDM\Oct01\1-16.SYD, created Mon Dec 17, 2001 at 22:19:36, contains variables:

WELL\$ PARAM_ID\$ VALUE LN_VALUE HD_VALUE HD_LN_VALU

- Data for the following results were selected according to:
 (PARAM_ID\$= "TCE")
- Effects coding used for categorical variables in model.

Categorical values encountered during processing are: WELL\$ (2 levels)

MW-16, MW-1S


Dep Var: HD_VALUE N: 87 Multiple R: 0.704 Squared multiple R: 0.496

Analysis of Variance

Source Sum-of-Squares df Mean-Square F-ratio P

WELL\$ 18470.644 1 18470.644 83.630 0.000

Error 18773.263 85 220.862

*** WARNING ***

66 is an outlier (Studentized Residual = 3.620) Case 5.404) 439 is an outlier (Studentized Residual = Case

Durbin-Watson D Statistic 1.366 First Order Autocorrelation 0.298

COL/

ROW WELL\$

1 MW-16

2 MW-1S

Using least squares means.

Post Hoc test of HD_VALUE

Using model MSE of 220.862 with 85 df. Matrix of pairwise mean differences:

> 0.000 1 2 -29.472 0.000

Tukey HSD Multiple Comparisons.

Matrix of pairwise comparison probabilities:

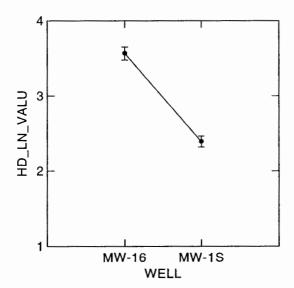
1 1.000 1 0.000 1.000 2

Data for the following results were selected according to: (PARAM_ID\$= "TCE")

Effects coding used for categorical variables in model.

Categorical values encountered during processing are: WELL\$ (2 levels)

MW-16, MW-1S


Dep Var: HD_LN_VALU N: 87 Multiple R: 0.748 Squared multiple R: 0.560

Analysis of Variance

Source	Sum-of-Squares	đf	Mean-Square	F-ratio	P
WELL\$	29.489	1	29.489	108.105	0.000
Error	23.187	85	0.273		

Least Squares Means

*** WARNING ***
Case 757 is an outlier (Studentized Residual = -3.377)

Durbin-Watson D Statistic 1.196
First Order Autocorrelation 0.385

COL/

ROW WELL\$

1 MW-16

2 MW-1S

Using least squares means. Post Hoc test of HD_LN_VALU

Using model MSE of 0.273 with 85 df. Matrix of pairwise mean differences:

1 2 1 0.000 2 -1.178 0.000

Tukey HSD Multiple Comparisons.
Matrix of pairwise comparison probabilities:

IMPORT successfully completed.

898 cases and 6 variables processed and saved.

SYSTAT Rectangular file C:\CDM\Oct01\1-3.SYD,
created Mon Dec 17, 2001 at 22:19:42, contains variables:

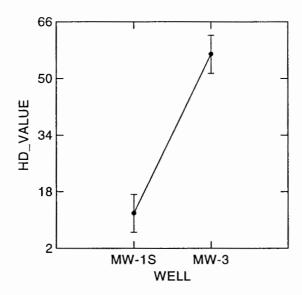
WELL\$ PARAM_ID\$ VALUE LN_VALUE HD_VALUE HD_LN_VALU

Effects coding used for categorical variables in model.

Categorical values encountered during processing are:

WELL\$ (2 levels)

MW-1S, MW-3


Dep Var: HD_VALUE N: 100 Multiple R: 0.514 Squared multiple R: 0.264

Analysis of Variance

Source Sum-of-Squares df Mean-Square F-ratio P

WELL\$ 50481.102 1 50481.102 35.120 0.000

Error 140865.432 98 1437.402

*** WARNING ***

893 is an outlier

(Studentized Residual = 7.940)

Durbin-Watson D Statistic

1.620 First Order Autocorrelation 0.190

COL/

ROW WELL\$

- 1 MW-1S
- 2 MW-3

Using least squares means.

Post Hoc test of HD_VALUE

Using model MSE of 1437.402 with 98 df. Matrix of pairwise mean differences:

> 0.000 1 2 44.936 0.000

Tukey HSD Multiple Comparisons.

Matrix of pairwise comparison probabilities:

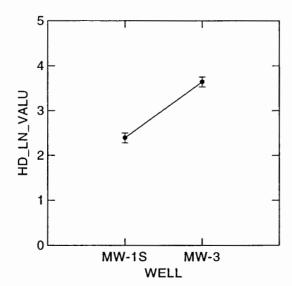
1.000 1 0.000 2 1.000

Data for the following results were selected according to: (PARAM_ID\$= "TCE")

Effects coding used for categorical variables in model.

Categorical values encountered during processing are: WELL\$ (2 levels) $\,$

MW-1S, MW-3


Dep Var: HD_LN_VALU N: 100 Multiple R: 0.632 Squared multiple R: 0.400

Analysis of Variance

Source	Sum-of-Squares	df	Mean-Square	F-ratio	P
WELL\$	39.249	1	39.249	65.332	0.000
Error	58.875	98	0.601		

—

Least Squares Means

*** WARNING ***

Case 838 is an outlier (Studentized Residual = -4.966)

Durbin-Watson D Statistic 1.705 First Order Autocorrelation 0.144

COL/

ROW WELL\$

1 MW-1S

2 MW-3

Using least squares means.
Post Hoc test of HD_LN_VALU

Using model MSE of 0.601 with 98 df.

Matrix of pairwise mean differences:

1 2 1 0.000 2 1.253 0.000

Tukey HSD Multiple Comparisons.

Matrix of pairwise comparison probabilities:

1 2 1 1.000 2 0.000 1.000

IMPORT successfully completed.

907 cases and 6 variables processed and saved.

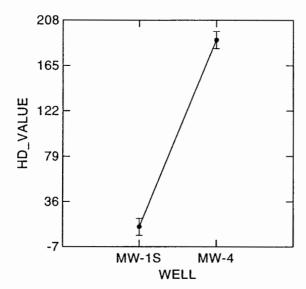
SYSTAT Rectangular file C:\CDM\Oct01\1-4.SYD, created Mon Dec 17, 2001 at 22:19:50, contains variables:

WELL\$ PARAM_ID\$ VALUE LN_VALUE HD_VALUE HD_LN_VALU

- Data for the following results were selected according to: (PARAM_ID\$= "TCE")
- Effects coding used for categorical variables in model.

Categorical values encountered during processing are: WELL\$ (2 levels)

MW-1S, MW-4


Dep Var: HD_VALUE N: 101 Multiple R: 0.841 Squared multiple R: 0.707

Analysis of Variance

Source Sum-of-Squares df Mean-Square F-ratio P

WELL\$ 793816.169 1 793816.169 238.871 0.000

Error 328996.870 99 3323.201

*** WARNING ***

358 is an outlier

(Studentized Residual = 3.742)

Durbin-Watson D Statistic 1.133

First Order Autocorrelation

COL/

ROW WELL\$

- 1 MW-1S
- 2 MW-4

Using least squares means.

Post Hoc test of HD_VALUE

Using model MSE of 3323.201 with 99 df. Matrix of pairwise mean differences:

> 0.000 2 177.317 0.000

Tukey HSD Multiple Comparisons.

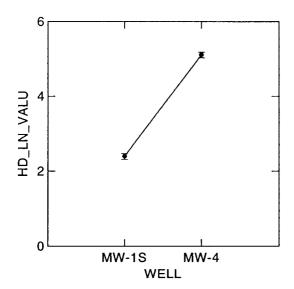
Matrix of pairwise comparison probabilities:

1 1.000 0.000 1.000

Data for the following results were selected according to: (PARAM_ID\$= "TCE")

Effects coding used for categorical variables in model.

Categorical values encountered during processing are: WELL\$ (2 levels)


MW-1S, MW-4

Dep Var: HD_LN_VALU N: 101 Multiple R: 0.930 Squared multiple R: 0.864

Analysis of Variance

Source	Sum-of-Squares	df	Mean-Square	F-ratio	P
WELL\$	186.237	1	186.237	629.483	0.000
Error	29.290	99	0.296		

Least Squares Means

*** WARNING ***

Case 336 is an outlier (Studentized Residual = -3.724) Case 712 is an outlier (Studentized Residual = -3.724)

Durbin-Watson D Statistic 1.482
First Order Autocorrelation 0.251

COL/

ROW WELL\$

1 MW-1S

2 MW-4

Using least squares means. Post Hoc test of HD_LN_VALU

Using model MSE of 0.296 with 99 df. Matrix of pairwise mean differences:

1 2 1 0.000 2 2.716 0.000

Tukey HSD Multiple Comparisons.

Matrix of pairwise comparison probabilities:

1 2 1 1.000 2 0.000 1.000

IMPORT successfully completed.

862 cases and 6 variables processed and saved.

SYSTAT Rectangular file C:\CDM\Oct01\1-6B.SYD, created Mon Dec 17, 2001 at 22:19:56, contains variables:

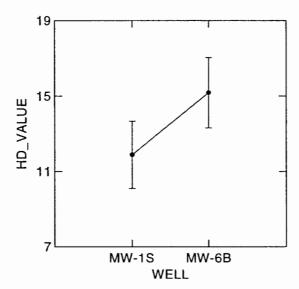
WELL\$ PARAM_ID\$ VALUE LN_VALUE HD_VALUE HD_LN_VALU

Effects coding used for categorical variables in model.

Categorical values encountered during processing are:

WELL\$ (2 levels)

■ MW-1S, MW-6B


Dep Var: HD_VALUE N: 96 Multiple R: 0.130 Squared multiple R: 0.017

Analysis of Variance

Source Sum-of-Squares df Mean-Square F-ratio P

WELL\$ 259.417 1 259.417 1.628 0.205

Error 14982.168 94 159.385

*** WARNING ***

Case	333 is an outlier	(Studentized Residual =	3.551)
Case	334 is an outlier	(Studentized Residual =	3.746)
Case	335 is an outlier	(Studentized Residual =	3.944)

Durbin-Watson D Statistic First Order Autocorrelation 0.728 COL/

ROW WELL\$

1 MW-1S

2 MW-6B

Using least squares means.

Post Hoc test of HD_VALUE

Using model MSE of 159.385 with 94 df.

Matrix of pairwise mean differences:

	1	2
1	0.000	
2	3.291	0.000

Tukey HSD Multiple Comparisons.

Matrix of pairwise comparison probabilities:

	1	2
1	1.000	
2	0.205	1.000

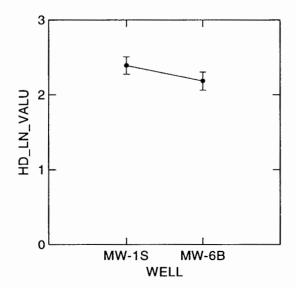
Data for the following results were selected according to:

(PARAM_ID\$= "TCE")

Effects coding used for categorical variables in model.

Categorical values encountered during processing are:

WELL\$ (2 levels) MW-1S, MW-6B


Dep Var: HD_LN_VALU N: 96 Multiple R: 0.126 Squared multiple R: 0.016

Analysis of Variance

Source	Sum-of-Squares	df	Mean-Square	F-ratio	P
WELL\$	1.029	1	1.029	1.525	0.220
Error	63.432	94	0.675		

Least Squares Means

Durbin-Watson D Statistic 0.841
First Order Autocorrelation 0.573

COL/

ROW WELL\$

- 1 MW-1S
- 2 MW-6B

Using least squares means.

Post Hoc test of HD_LN_VALU

Using model MSE of 0.675 with 94 df.

Matrix of pairwise mean differences:

1 2 1 0.000 2 -0.207 0.000

Tukey HSD Multiple Comparisons.

Matrix of pairwise comparison probabilities:

1 2 1 1.000 2 0.220 1.000

IMPORT successfully completed.

898 cases and 6 variables processed and saved.

SYSTAT Rectangular file C:\CDM\Oct01\1-7.SYD, created Mon Dec 17, 2001 at 22:20:04, contains variables:

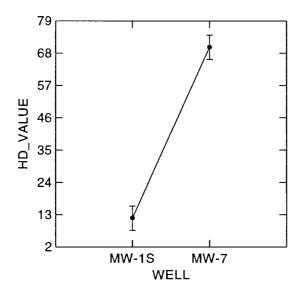
WELL\$ PARAM_ID\$ VALUE LN_VALUE HD_VALUE HD_LN_VALU

- Data for the following results were selected according to: (PARAM_ID\$= "TCE")
- Effects coding used for categorical variables in model.

Categorical values encountered during processing are:

WELL\$ (2 levels)
MW-1S, MW-7

Dep Var: HD_VALUE N: 100 Multiple R: 0.709 Squared multiple R: 0.502


Analysis of Variance

 Source
 Sum-of-Squares
 df
 Mean-Square
 F-ratio
 P

 WELL\$
 84584.997
 1
 84584.997
 98.879
 0.000

 Error
 83833.215
 98
 855.441

Least Squares Means

*** WARNING ***

448 is an outlier

(Studentized Residual = 3.665)

Durbin-Watson D Statistic 1.434 First Order Autocorrelation 0.283

COL/

ROW WELL\$

- 1 MW-1s
- 2 MW-7

Using least squares means.

Post Hoc test of HD_VALUE

Using model MSE of 855.441 with 98 df. Matrix of pairwise mean differences:

> 2 1 1 0.000 2 58.167 0.000

Tukey HSD Multiple Comparisons.

Matrix of pairwise comparison probabilities:

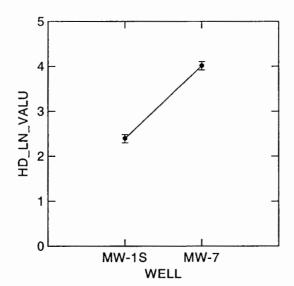
1 1.000 0.000 1.000

Data for the following results were selected according to: (PARAM_ID\$= "TCE")

Effects coding used for categorical variables in model.

Categorical values encountered during processing are: WELL\$ (2 levels) $\,$

MW-1S, MW-7


Dep Var: HD_LN_VALU N: 100 Multiple R: 0.780 Squared multiple R: 0.608

Analysis of Variance

	Source	Sum-of-Squares	đf	Mean-Square	F-ratio	P
-	WELL\$	65.797	1	65.797	152.314	0.000
	Error	42.334	98	0.432		

.....

Least Squares Means

*** WARNING ***

Case 336 is an outlier (Studentized Residual = -6.182)

Durbin-Watson D Statistic 1.71 First Order Autocorrelation 0.13

COL/

ROW WELL\$

1 MW-1S

2 MW-7

Using least squares means. Post Hoc test of HD_LN_VALU

Using model MSE of 0.432 with 98 df.

Matrix of pairwise mean differences:

1 2 1 0.000 2 1.622 0.000

Tukey HSD Multiple Comparisons.

Matrix of pairwise comparison probabilities:

1 2 1 1.000 2 0.000 1.000

IMPORT successfully completed.

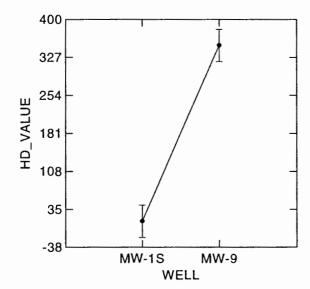
907 cases and 6 variables processed and saved.

SYSTAT Rectangular file C:\CDM\Oct01\1-9.SYD, created Mon Dec 17, 2001 at 22:20:12, contains variables:

WELL\$ PARAM_ID\$ VALUE LN_VALUE HD_VALUE HD_LN_VALU

- Data for the following results were selected according to: (PARAM_ID\$= "TCE")
- Effects coding used for categorical variables in model.

Categorical values encountered during processing are: WELL\$ (2 levels)


MW-1S, MW-9

Dep Var: HD_VALUE N: 101 Multiple R: 0.611 Squared multiple R: 0.373

Analysis of Variance

Source Sum-of-Squares df Mean-Square F-ratio P
WELL\$ 2885439.502 1 2885439.502 58.891 0.000
Error 4850643.654 99 48996.401

Least Squares Means

*** WARNING ***

Case 359 is an outlier (Studentized Residual = 3.626)
Case 694 is an outlier (Studentized Residual = 4.791)
Case 712 is an outlier (Studentized Residual = 4.190)

Durbin-Watson D Statistic 1.422
First Order Autocorrelation 0.289

COT/

ROW WELL\$

1 MW-1S

2 MW-9

Using least squares means.

Post Hoc test of HD_VALUE

Using model MSE of 48996.401 with 99 df. Matrix of pairwise mean differences:

Tukey HSD Multiple Comparisons.

Matrix of pairwise comparison probabilities:

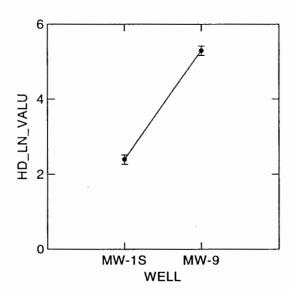
	1	2
1	1.000	
2	0.000	1.000

Data for the following results were selected according to:

(PARAM_ID\$= "TCE")

Effects coding used for categorical variables in model.

Categorical values encountered during processing are:


WELL\$ (2 levels) MW-1S, MW-9

Dep Var: HD_LN_VALU N: 101 Multiple R: 0.855 Squared multiple R: 0.732

Analysis of Variance

-	Source	Sum-of-Squares	df	Mean-Square	F-ratio	P
	WELL\$	212.581	1	212.581	269.798	0.000
(400	Error	78.005	99	0.788		

Least Squares Means

Durbin-Watson D Statistic 1.221
First Order Autocorrelation 0.386

COL/

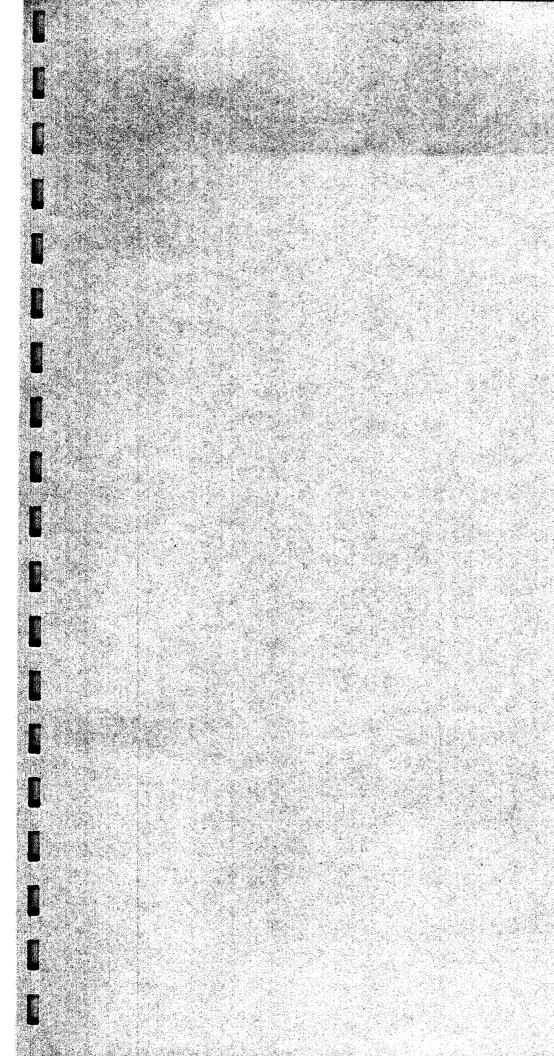
ROW WELL\$

- 1 MW-1S
- 2 MW-9

Using least squares means. Post Hoc test of HD_LN_VALU

FOSC NOC CESC OI ND_DN_VADO

Using model MSE of 0.788 with 99 df.


Matrix of pairwise mean differences:

1 2 1 0.000 2 2.902 0.000

Tukey HSD Multiple Comparisons.
Matrix of pairwise comparison probabilities:

1 2 1 1.000 2 0.000 1.000

Appendix F-6 Nonparametric Kruskal-Wallis/ Mann-Whitney U Test Results IMPORT successfully completed.

SYSTAT Rectangular file C:\CDM\Oct01\1-11.syd, created Mon Dec 17, 2001 at 22:19:18, contains variables:

WELL\$ PARAM_ID\$ VALUE LN_VALUE HD_VALUE HD_LN_VALU

The following results are for: PARAM_ID\$ = BEN

Categorical values encountered during processing are: WELL\$ (2 levels)

MW-11, MW-1S

Kruskał-Wallis One-Way Analysis of Variance for 100 cases Dependent variable is VALUE Grouping variable is WELL\$

Group Count Rank Sum

MW-11 50 3029.500 MW-1S 50 2020.500

Mann-Whitney U test statistic = 1754.500

Probability is 0.000

Chi-square approximation = 13.741 with 1 df

The following results are for: PARAM_ID\$ = CD

Categorical values encountered during processing are:

WELL\$ (2 levels)

MW-11, MW-1S

- Kruskal-Wallis One-Way Analysis of Variance for 100 cases Dependent variable is VALUE Grouping variable is WELL\$
- Group Count Rank Sum

MW-11 50 2478.000 MW-1S 50 2572.000

Mann-Whitney U test statistic = 1203.000

Probability is 0.628

Chi-square approximation = 0.235 with 1 df

The following results are for:

PARAM_ID\$ = CU

- Categorical values encountered during processing are:
- WELL\$ (2 levels)

MW-11, MW-1S

- Kruskal-Wallis One-Way Analysis of Variance for 100 cases
 - Dependent variable is VALUE Grouping variable is WELL\$
- __ Group Count Rank Sum

MW-11 50 2588.000 50 2462.000 MW-1S

> Mann-Whitney U test statistic = 1313.000

Probability is 0.629

Chi-square approximation = 0.233 with 1 df

The following results are for: PARAM_ID\$ = EBN

Categorical values encountered during processing are:

WELL\$ (2 levels)

MW-11, MW-1S

Kruskal-Wallis One-Way Analysis of Variance for 100 cases Dependent variable is VALUE Grouping variable is WELL\$

Count Rank Sum Group

> MW-11 50 3693.500 MW-1S 50 1356.500

Mann-Whitney U test statistic = 2418.500

Probability is 0.000

Chi-square approximation = 67.549 with 1 df

The following results are for: PARAM_ID\$ = HCR

Categorical values encountered during processing are:

WELL\$ (2 levels)

MW-11, MW-1S

- Kruskal-Wallis One-Way Analysis of Variance for 100 cases Dependent variable is VALUE Grouping variable is WELL\$
- Count Rank Sum Group

MW-11 50 2506.000

MW-1S 50 2544.000

Mann-Whitney U test statistic = 1231.000

Probability is 0.863

Chi-square approximation = 0.030 with 1 df

The following results are for:

PARAM_ID\$ = TCE

Categorical values encountered during processing are:

WELL\$ (2 levels)

MW-11, MW-1S

Kruskal-Wallis One-Way Analysis of Variance for 100 cases

Dependent variable is VALUE Grouping variable is WELL\$

Count Rank Sum Group

> MW-11 50 3675.000 MW-1S 50 1375.000

Mann-Whitney U test statistic = 2400.000

Probability is 0.000

> Chi-square approximation = 62.882 with 1 df

The following results are for: PARAM_ID\$ = TCR

Categorical values encountered during processing are: WELL\$ (2 levels)

MW-11, MW-1S

- Kruskal-Wallis One-Way Analysis of Variance for 100 cases Dependent variable is VALUE Grouping variable is WELL\$
- Count Rank Sum Group

MW-11 50 2543.000 **MW-1S** 50 2507.000

Mann-Whitney U test statistic = 1268.000

Probability is 0.856

Chi-square approximation = 0.033 with 1 df

The following results are for: PARAM_ID\$ = TOL

Categorical values encountered during processing are:

WELL\$ (2 levels) MW-11, MW-1S

Kruskal-Wallis One-Way Analysis of Variance for 98 cases Dependent variable is VALUE Grouping variable is WELL\$

> Count Rank Sum Group

MW-11 49 3322.500 MW-1S 49 1528.500

Mann-Whitney U test statistic = 2097.500

Probability is 0.000

Chi-square approximation = 44.998 with 1 df

The following results are for: $PARAM_ID$ = TX$

Categorical values encountered during processing are:

WELL\$ (2 levels) MW-11, MW-1S

Kruskal-Wallis One-Way Analysis of Variance for 100 cases Dependent variable is VALUE Grouping variable is WELL\$

Group Count Rank Sum

MW-11 50 3462.000 MW-1S 50 1588.000

Mann-Whitney U test statistic = 2187.000

Probability is 0.000

Chi-square approximation = 43.288 with 1 df

SYSTAT Rectangular file C:\CDM\Oct01\1-14s.syd, created Mon Dec 17, 2001 at 22:19:24, contains variables:

WELL\$

PARAM_ID\$

VALUE

LN_VALUE

HD_VALUE

HD_LN_VALU

Categorical values encountered during processing are:

WELL\$ (2 levels)

```
MW-11, MW-1S
Kruskal-Wallis One-Way Analysis of Variance for 100 cases
Dependent variable is VALUE
Grouping variable is WELL$
  Group
           Count Rank Sum
 MW-11
              50 2543.000
MW-1S
              50 2507.000
Mann-Whitney U test statistic =
                              1268.000
Probability is
               0.856
Chi-square approximation =
                             0.033 with 1 df
The following results are for:
 PARAM_ID$ = TOL
Categorical values encountered during processing are:
WELL$ (2 levels)
 MW-11, MW-1S
Kruskal-Wallis One-Way Analysis of Variance for 98 cases
Dependent variable is VALUE
Grouping variable is WELL$
           Count Rank Sum
  Group
 MW-11
              49 3322.500
 MW-1S
              49 1528.500
Mann-Whitney U test statistic =
                               2097.500
Probability is
                0.000
                             44.998 with 1 df
Chi-square approximation =
The following results are for:
 PARAM_ID$ = TX
Categorical values encountered during processing are:
WELL$ (2 levels)
 MW-11, MW-1S
Kruskal-Wallis Cne-Way Analysis of Variance for 100 cases
Dependent variable is VALUE
Grouping variable is WELL$
  Group
            Count Rank Sum
 MW-11
              50 3462,000
 MW-1S
              50 1588.000
Mann-Whitney U test statistic =
                               2187.000
Probability is
                0.000
Chi-square approximation =
                             43.288 with 1 df
SYSTAT Rectangular file C:\CDM\Oct01\1-14s.syd,
created Mon Dec 17, 2001 at 22:19:24, contains variables:
                                                                                           HD_VALUE
                                                                                                             HD_LN_VALU
                                                     VALUE
                                                                      LN_VALUE
            WELL$
                            PARAM ID$
The following results are for:
```

Chi-square approximation = 48.473 with 1 df

The following results are for: PARAM_ID\$ = TOL

Categorical values encountered during processing are: WELL\$ (2 levels)

MW-14S, MW-1S

Kruskal-Wallis One-Way Analysis of Variance for 90 cases Dependent variable is VALUE Grouping variable is WELL\$

Group Count Rank Sum

MW-14S 41 2266.500 MW-1S 49 1828.500

Mann-Whitney U test statistic = 1405.500

Probability is 0.000

Chi-square approximation = 15.005 with 1 df

The following results are for:

PARAM_ID\$ = TX

Categorical values encountered during processing are: WELL\$ (2 levels)

MW-14S, MW-1S

Kruskal-Wallis One-Way Analysis of Variance for 92 cases Dependent variable is VALUE Grouping variable is WELL\$

Group Count Rank Sum

MW-14S 42 2381.000 MW-1S 50 1897.000

Mann-Whitney U test statistic = 1478.000

Probability is 0.000

Chi-square approximation = 12.546 with 1 df

SYSTAT Rectangular file C:\CDM\Oct01\1-15s.syd, created Mon Dec 17, 2001 at 22:19:30, contains variables:

WELL\$

PARAM_ID\$

VALUE

LN_VALUE

HD_VALUE

HD_LN_VALU

The following results are for:

PARAM_ID\$ = BEN

Categorical values encountered during processing are: WELL\$ (2 levels)

MW-15S, MW-1S

ruskal-Wallis One-Way Analysis of Variance for 93 cases ependent variable is VALUE trouping variable is WELL\$

Group Count Rank Sum

W-15S 43 2058.000 W-1S 50 2313.000

nn-Whitney U test statistic = 1112.000

Grouping variable is WELL\$

Group Count Rank Sum

MW-14S 42 2686.000 MW-1S 50 1592.000

Mann-Whitney U test statistic = 1783.000

Probability is 0.000

Chi-square approximation = 35.977 with 1 df

The following results are for:

PARAM_ID\$ = HCR

Categorical values encountered during processing are:

WELL\$ (2 levels)

MW-14S, MW-1S

Kruskal-Wallis One-Way Analysis of Variance for 92 cases Dependent variable is VALUE Grouping variable is WELL\$

Group Count Rank Sum

MW-14S 42 2360.500 MW-1S 50 1917.500

Mann-Whitney U test statistic = 1457.500

Probability is 0.000

Chi-square approximation = 12.626 with 1 df

The following results are for: PARAM_ID\$ = TCE

Categorical values encountered during processing are:

WELL\$ (2 levels) MW-14S, MW-1S

- Kruskal-Wallis One-Way Analysis of Variance for 92 cases Dependent variable is VALUE Grouping variable is WELL\$
- Group Count Rank Sum

MW-14S 42 2968.000

MW-1S 50 1310.000

Mann-Whitney U test statistic = 2065.000

Probability is 0.000

Chi-square approximation = 63.346 with 1 df

The following results are for:

 $PARAM_ID$ = TCR$

- Categorical values encountered during processing are:
- WELL\$ (2 levels)

MW-14S, MW-1S

- Kruskal-Wallis One-Way Analysis of Variance for 92 cases
- Dependent variable is VALUE

Grouping variable is WELL\$

Group Count Rank Sum

MW-14S 42 2762.000 MW-1S 50 1516.000

Mann-Whitney U test statistic = 1859.000

Probability is 0.000

Chi-square approximation = 48.473 with 1 df

The following results are for: PARAM_ID\$ = TOL

 Categorical values encountered during processing are: WELL\$ (2 levels)

MW-14S, MW-1S

- Kruskal-Wallis One-Way Analysis of Variance for 90 cases Dependent variable is VALUE Grouping variable is WELL\$
- Group Count Rank Sum

MW-14S 41 2266.500 MW-1S 49 1828.500

Mann-Whitney U test statistic = 1405.500

Probability is 0.000

Chi-square approximation = 15.005 with 1 df

- The following results are for: PARAM_ID\$ = TX
- Categorical values encountered during processing are: WELL\$ (2 levels) MW-14S, MW-1S
- Kruskal-Wallis One-Way Analysis of Variance for 92 cases
 Dependent variable is VALUE
 Grouping variable is WELL\$
- Group Count Rank Sum

MW-14S 42 2381.000 MW-1S 50 1897.000

Mann-Whitney U test statistic = 1478.000

Probability is 0.000

Chi-square approximation = 12.546 with 1 df

SYSTAT Rectangular file C:\CDM\Oct01\1-15s.syd, created Mon Dec 17, 2001 at 22:19:30, contains variables:

WELL\$ PARAM_ID\$ VALUE LN_VALUE HD_VALUE HD_LN_VALU

The following results are for: PARAM_ID\$ = BEN

Categorical values encountered during processing are:

WELL\$ (2 levels) MW-15S, MW-1S

Kruskal-Wallis One-Way Analysis of Variance for 93 cases Dependent variable is VALUE Grouping variable is WELL\$

Group Count Rank Sum

MW-15S 43 2058.000 MW-1S 50 2313.000

Mann-Whitney U test statistic = 1112.000

Probability is 0.720

Chi-square approximation = 0.128 with 1 df

The following results are for:

PARAM_ID\$ = CD

Categorical values encountered during processing are:

WELL\$ (2 levels)

MW-15S, MW-1S

Kruskal-Wallis One-Way Analysis of Variance for 93 cases Dependent variable is VALUE

Grouping variable is WELL\$

Group Count Rank Sum

MW-15S 43 2145.000 MW-1S 50 2226.000

Mann-Whitney U test statistic = 1199.000

Probability is 0.136

Chi-square approximation = 2.227 with 1 df

The following results are for:

PARAM_ID\$ = CU

Categorical values encountered during processing are:

WELL\$ (2 levels)

MW-15S, MW-1S

Kruskal-Wallis One-Way Analysis of Variance for 93 cases Dependent variable is VALUE

Grouping variable is WELL\$

Group Count Rank Sum

MW-15S 43 1968.000 MW-1S 50 2403.000

Mann-Whitney U test statistic = 1022.000

Probability is 0.635

Chi-square approximation = 0.226 with 1 df

The following results are for:

PARAM_ID\$ = EBN

Categorical values encountered during processing are:

WELL\$ (2 levels) MW-15S, MW-1S

Kruskal-Wallis One-Way Analysis of Variance for 93 cases

Dependent variable is VALUE Grouping variable is WELL\$

Group Count Rank Sum

MW-15S 43 2431.500

MW-1S 50 1939.500

Mann-Whitney U test statistic = 1485.500

Probability is 0.001

Chi-square approximation = 11.724 with 1 df

The following results are for:

PARAM_ID\$ = HCR

Categorical values encountered during processing are:

WELL\$ (2 levels)

MW-15S, MW-1S

Kruskal-Wallis One-Way Analysis of Variance for 93 cases Dependent variable is VALUE Grouping variable is WELL\$

Group Count Rank Sum

MW-15S 43 1991.500 MW-1S 50 2379.500

Mann-Whitney U test statistic = 1045.500

Probability is 0.771

Chi-square approximation = 0.085 with 1 df

The following results are for:

PARAM_ID\$ = TCE

 Categorical values encountered during processing are: WELL\$ (2 levels)

MW-15S, MW-1S

Kruskal-Wallis One-Way Analysis of Variance for 93 cases Dependent variable is VALUE Grouping variable is WELL\$

Group Count Rank Sum

MW-15S 43 1369.500 MW-1S 50 3001.500

Mann-Whitney U test statistic = 423.500

Probability is 0.000

Chi-square approximation = 25.227 with 1 df

The following results are for: PARAM_ID\$ = TCR

Categorical values encountered during processing are: WELL\$ (2 levels)

MW-15S, MW-1S

- Kruskal-Wallis One-Way Analysis of Variance for 93 cases Dependent variable is VALUE Grouping variable is WELL\$
- Group Count Rank Sum

MW-15S 43 2214.000 MW-1S 50 2157.000

Mann-Whitney U test statistic = 1268.000

Probability is 0.038

Chi-square approximation = 4.284 with 1 df

The following results are for:

PARAM_ID\$ = TOL

Categorical values encountered during processing are:

WELL\$ (2 levels)

MW-15S, MW-1S

Kruskal-Wallis One-Way Analysis of Variance for 91 cases

Dependent variable is VALUE Grouping variable is WELL\$

Group Count Rank Sum

MW-15S 42 2119,000 MW-1S 49 2067,000

Mann-Whitney U test statistic = 1216.000

Probability is 0.058

Chi-square approximation = 3.585 with 1 df

The following results are for: PARAM_ID\$ = TX

Categorical values encountered during processing are:

WELL\$ (2 levels) MW-15S, MW-1S

Kruskal-Wallis One-Way Analysis of Variance for 93 cases

Dependent variable is VALUE Grouping variable is WELL\$

Group Count Rank Sum

MW-15S 43 2195.000 MW-1S 50 2176.000

Mann-Whitney U test statistic = 1249.000

Probability is 0.147

Chi-square approximation = 2.106 with 1 df

SYSTAT Rectangular file C:\CDM\Oct01\1-16.syd, created Mon Dec 17, 2001 at 22:19:36, contains variables:

WELL\$ PARAM_ID\$ VALUE LN_VALUE HD_VALUE HD_LN_VALU

The following results are for: PARAM_ID\$ = BEN

Categorical values encountered during processing are:

WELL\$ (2 levels) MW-16, MW-1S

Kruskal-Wallis One-Way Analysis of Variance for 87 cases

Dependent variable is VALUE Grouping variable is WELL\$

Group Count Rank Sum

MW-16 37 2110.500 MW-1S 50 1717.500

Mann-Whitney U test statistic = 1407.500

Probability is 0.000

Chi-square approximation = 20.737 with 1 df

The following results are for:

 $PARAM_ID$ = CD$

Categorical values encountered during processing are:

WELL\$ (2 levels) MW-16, MW-1S

Kruskal-Wallis One-Way Analysis of Variance for 87 cases
 Dependent variable is VALUE

Grouping variable is WELL\$

Group Count Rank Sum

MW-16 37 1617.000 MW-1S 50 2211.000

Mann-Whitney U test statistic = 914.000

Probability is 0.858

Chi-square approximation = 0.032 with 1 df

The following results are for:

PARAM_ID\$ = CU

Categorical values encountered during processing are:

WELL\$ (2 levels)

MW-16, MW-1S

Kruskal-Wallis One-Way Analysis of Variance for 87 cases Dependent variable is VALUE

Grouping variable is WELL\$

Group Count Rank Sum

MW-16 37 1668.000 MW-1S 50 2160.000

Mann-Whitney U test statistic = 965.000

Probability is 0.695

Chi-square approximation = 0.154 with 1 df

The following results are for:

PARAM_ID\$ = EBN

Categorical values encountered during processing are:

WELL\$ (2 levels)

MW-16, MW-1S

Kruskal-Wallis One-Way Analysis of Variance for 87 cases Dependent variable is VALUE

Grouping variable is WELL\$

Group Count Rank Sum

MW-16 37 2382.000 MW-1S 50 1446.000

Mann-Whitney U test statistic = 1679.000

Probability is 0.000

Chi-square approximation = 45.401 with 1 df

The following results are for:

 $PARAM_ID$ \$ = HCR

Categorical values encountered during processing are:

WELL\$ (2 levels)

MW-16, MW-1S

Kruskal-Wallis One-Way Analysis of Variance for 87 cases

Dependent variable is VALUE

Grouping variable is WELL\$

Group Count Rank Sum

MW-16 37 1521.500

MW-1S 50 2306.500

Mann-Whitney U test statistic = 818.500

Probability is 0.230

Chi-square approximation = 1.438 with 1 df

The following results are for:

 $PARAM_ID$ \$ = TCE

Categorical values encountered during processing are: WELL\$ (2 levels)

MW-16, MW-1S

Kruskal-Wallis One-Way Analysis of Variance for 87 cases Dependent variable is VALUE Grouping variable is WELL\$

Group Count Rank Sum

MW-16 37 2522.500 MW-1S 50 1305.500

Mann-Whitney U test statistic = 1819.500

Probability is 0.000

Chi-square approximation = 59.033 with 1 df

The following results are for:

PARAM_ID\$ = TCR

Categorical values encountered during processing are:

WELL\$ (2 levels)

MW-16, MW-1S

Kruskal-Wallis One-Way Analysis of Variance for 87 cases Dependent variable is VALUE Grouping variable is WELL\$

Group Count Rank Sum

MW-16 37 1601.000 MW-1S 50 2227.000

Mann-Whitney U test statistic = 898.000

Probability is 0.644

Chi-square approximation = 0.214 with 1 df

The following results are for: PARAM_ID\$ = TOL

Categorical values encountered during processing are:

WELL\$ (2 levels) MW-16, MW-1S

Kruskal-Wallis One-Way Analysis of Variance for 85 cases Dependent variable is VALUE Grouping variable is WELL\$

Group Count Rank Sum

MW-16 36 2087.500 MW-1S 49 1567.500

Mann-Whitney U test statistic = 1421.500

Probability is 0.000

Chi-square approximation = 28.936 with 1 df

The following results are for:

 $PARAM_ID$ = TX$

Categorical values encountered during processing are:

WELL\$ (2 levels)

MW-16, MW-1S

Kruskal-Wallis One-Way Analysis of Variance for 87 cases

Dependent variable is VALUE

Grouping variable is WELL\$

Group Count Rank Sum

MW-16 37 2172.000 MW-1S 50 1656.000

Mann-Whitney U test statistic = 1469.000

Probability is 0.000

Chi-square approximation = 23.239 with 1 df

SYSTAT Rectangular file C:\CDM\Oct01\1-3.syd, created Mon Dec 17, 2001 at 22:19:42, contains variables:

WELL\$ PARAM_ID\$ VALUE LN_VALUE HD_VALUE HD_LN_VALU

The following results are for:

PARAM_ID\$ = BEN

Categorical values encountered during processing are:

WELL\$ (2 levels)

MW-1S, MW-3

Kruskal-Wallis One-Way Analysis of Variance for 100 cases

Dependent variable is VALUE

Grouping variable is WELL\$

Group Count Rank Sum

MW-1S 50 2213.000 MW-3 50 2837.000

Mann-Whitney U test statistic = 938.000

Probability is 0.013

Chi-square approximation = 6.193 with 1 df

The following results are for:

 $PARAM_ID$ = CD$

Categorical values encountered during processing are:

WELL\$ (2 levels)

MW-1S, MW-3

Kruskal-Wallis One-Way Analysis of Variance for 100 cases

Dependent variable is VALUE

Grouping variable is WELL\$

Group Count Rank Sum

MW-1S

50 2525.000

MW-3 50 2525.000

Mann-Whitney U test statistic = 1250.000

Probability is 1.000

Chi-square approximation = 0.000 with 1 df

The following results are for:

 $PARAM_ID$ = CU$

Categorical values encountered during processing are:

WELL\$ (2 levels)

MW-1S, MW-3

Kruskal-Wallis One-Way Analysis of Variance for 100 cases

Dependent variable is VALUE Grouping variable is WELL\$

Group Count Rank Sum

MW-1S 50 2596.500 MW-3 50 2453.500

Mann-Whitney U test statistic = 1321.500

Probability is 0.558

Chi-square approximation = 0.343 with 1 df

The following results are for: PARAM_ID\$ = EBN

Categorical values encountered during processing are: WELL\$ (2 levels)

MW-1S, MW-3

Kruskal-Wallis One-Way Analysis of Variance for 100 cases Dependent variable is VALUE Grouping variable is WELL\$

Group Count Rank Sum

MW-1S 50 1932.500 MW-3 50 3117.500

Mann-Whitney U test statistic = 657.500

Probability is 0.000

Chi-square approximation = 19.074 with 1 df

The following results are for: PARAM_ID\$ = HCR

Categorical values encountered during processing are: WELL\$ (2 levels)

MW-1S, MW-3

Kruskal-Wallis One-Way Analysis of Variance for 100 cases Dependent variable is VALUE Grouping variable is WELL\$

Group Count Rank Sum

MW-1S 50 2506.000 MW-3 50 2544.000

Mann-Whitney U test statistic = 1231.000

Probability is 0.867

Chi-square approximation = 0.028 with 1 df

The following results are for: PARAM_ID\$ = TCE

Categorical values encountered during processing are: WELL\$ (2 levels)

MW-1S, MW-3

Kruskal-Wallis One-Way Analysis of Variance for 100 cases
 Dependent variable is VALUE
 Grouping variable is WELL\$

Group Count Rank Sum

MW-1S 50 1511.500 MW-3 50 3538.500

Mann-Whitney U test statistic = 236.500

Probability is 0.000

Chi-square approximation = 48.863 with 1 df

The following results are for:

 $PARAM_ID$ \$ = TCR

Categorical values encountered during processing are: WELL\$ (2 levels)

MW-1S, MW-3

Kruskal-Wallis One-Way Analysis of Variance for 100 cases Dependent variable is VALUE Grouping variable is WELL\$

Group Count Rank Sum

MW-1S 50 2454.500 50 2595.500 MW-3

Mann-Whitney U test statistic = 1179.500

Probability is 0.434

Chi-square approximation = 0.612 with 1 df

The following results are for: $PARAM_ID$ = TOL$

Categorical values encountered during processing are: WELL\$ (2 levels) MW-1S, MW-3

Kruskal-Wallis One-Way Analysis of Variance for 98 cases Dependent variable is VALUE Grouping variable is WELL\$

Count Rank Sum Group

MW-1S 49 1953.500 MW-3 49 2897.500

Mann-Whitney U test statistic = 728.500

Probability is 0.000

Chi-square approximation = 16.537 with 1 df

The following results are for: $PARAM_ID$ = TX$

Categorical values encountered during processing are: WELL\$ (2 levels) MW-1S, MW-3

Kruskal-Wallis One-Way Analysis of Variance for 100 cases

Dependent variable is VALUE Grouping variable is WELL\$

Group Count Rank Sum

MW-1S 50 2114.500 50 2935.500 MW-3

Mann-Whitney U test statistic = 839.500

Probability is 0.003

Chi-square approximation = 9.079 with 1 df

SYSTAT Rectangular file C:\CDM\Oct01\1-4.syd, created Mon Dec 17, 2001 at 22:19:50, contains variables: WELL\$ PARAM_ID\$ VALUE LN_VALUE HD_VALUE HD_LN_VALU

The following results are for:

PARAM_ID\$ = BEN

Categorical values encountered during processing are:

WELL\$ (2 levels)

MW-1S, MW-4

Kruskal-Wallis One-Way Analysis of Variance for 101 cases Dependent variable is VALUE

Grouping variable is WELL\$

Group Count Rank Sum

MW-1S 50 1631.500 MW-4 51 3519.500

Mann-Whitney U test statistic = 356.500

Probability is 0.000

Chi-square approximation = 42.813 with 1 df

The following results are for:

PARAM_ID\$ = CD

Categorical values encountered during processing are:

WELL\$ (2 levels)

MW-1S, MW-4

Kruskal-Wallis One-Way Analysis of Variance for 101 cases

Dependent variable is VALUE

Grouping variable is WELL\$

Group Count Rank Sum

MW-1S 50 1301.000 MW-4 51 3850.000

Mann-Whitney U test statistic = 26.000

Probability is 0.000

Chi-square approximation = 78.004 with 1 df

The following results are for:

PARAM ID\$ = CU

Categorical values encountered during processing are:

WELL\$ (2 levels)

MW-1S, MW-4

Kruskal-Wallis One-Way Analysis of Variance for 101 cases

Dependent variable is VALUE

Grouping variable is WELL\$

Group Count Rank Sum

MW-1S 50 2343.500 MW-4 51 2807.500

Mann-Whitney U test statistic = 1068.500

Probability is 0.121

Chi-square approximation = 2.407 with 1 df

The following results are for:

PARAM_ID\$ = EBN

Categorical values encountered during processing are:

WELL\$ (2 levels) MW-1S, MW-4

Kruskal-Wallis One-Way Analysis of Variance for 101 cases Dependent variable is VALUE

Grouping variable is WELL\$

Group Count Rank Sum

MW-1S 50 1404.500 MW-4 51 3746.500

Mann-Whitney U test statistic = 129.500

Probability is 0.000

Chi-square approximation = 63.415 with 1 df

The following results are for: PARAM_ID\$ = HCR

Categorical values encountered during processing are: WELL\$ (2 levels)

MW-1S, MW-4

Kruskal-Wallis One-Way Analysis of Variance for 101 cases Dependent variable is VALUE Grouping variable is WELL\$

Group Count Rank Sum

MW-1S 50 1275.000 MW-4 51 3876.000

Mann-Whitney U test statistic = 0.000

Probability is 0.000

Chi-square approximation = 78.888 with 1 df

The following results are for: PARAM_ID\$ = TCE

Categorical values encountered during processing are: WELL\$ (2 levels)

MW-1S, MW-4

Kruskal-Wallis One-Way Analysis of Variance for 101 cases Dependent variable is VALUE Grouping variable is WELL\$

Group Count Rank Sum

MW-1S 50 1276.000 MW-4 51 3875.000

Mann-Whitney U test statistic = 1.000

Probability is 0.000

Chi-square approximation = 74.937 with 1 df

The following results are for: PARAM_ID\$ = TCR

Categorical values encountered during processing are:

WELL\$ (2 levels) MW-1S, MW-4

Kruskal-Wallis One-Way Analysis of Variance for 101 cases Dependent variable is VALUE Grouping variable is WELL\$

Group Count Rank Sum

MW-1S 50 1275.000 MW-4 51 3876.000

Mann-Whitney U test statistic = 0.000

Probability is 0.000

Chi-square approximation = 81.758 with 1 df

The following results are for: PARAM_ID\$ = TOL

Categorical values encountered during processing are: WELL\$ (2 levels)

MW-1S, MW-4

Kruskal-Wallis One-Way Analysis of Variance for 99 cases Dependent variable is VALUE Grouping variable is WELL\$

Group Count Rank Sum

MW-1S 49 1435.000 MW-4 50 3515.000

Mann-Whitney U test statistic = 210.000

Probability is 0.000

Chi-square approximation = 56.569 with 1 df

The following results are for: PARAM_ID\$ = TX

Categorical values encountered during processing are: WELL\$ (2 levels)

MW-1S, MW-4

Kruskal-Wallis One-Way Analysis of Variance for 101 cases Dependent variable is VALUE Grouping variable is WELL\$

Group Count Rank Sum

MW-1S 50 1354.500 MW-4 51 3796.500

Mann-Whitney U test statistic = 79.500

Probability is 0.000

Chi-square approximation = 68.118 with 1 df

SYSTAT Rectangular file C:\CDM\Oct01\1-6B.syd, created Mon Dec 17, 2001 at 22:19:56, contains variables:

WELL\$ PARAM_ID\$ VALUE LN_VALUE HD_VALUE HD_LN_VALU

The following results are for: PARAM_ID\$ = BEN

Categorical values encountered during processing are:

WELL\$ (2 levels) MW-1S, MW-6B

Kruskal-Wallis One-Way Analysis of Variance for 96 cases Dependent variable is VALUE Grouping variable is WELL\$ Group Count Rank Sum

MW-1S 50 2368.000 MW-6B 46 2288.000

Mann-Whitney U test statistic = 1093.000

Probability is 0.612

Chi-square approximation = 0.258 with 1 df

The following results are for:

PARAM_ID\$ = CD

Categorical values encountered during processing are:

WELL\$ (2 levels)

MW-1S, MW-6B

Kruskal-Wallis One-Way Analysis of Variance for 96 cases Dependent variable is VALUE

Grouping variable is WELL\$

Group Count Rank Sum

MW-1S 50 2375.000 MW-6B 46 2281.000

Mann-Whitney U test statistic = 1100.000

Probability is 0.550

Chi-square approximation = 0.358 with 1 df

The following results are for:

PARAM_ID\$ = CU

Categorical values encountered during processing are:

WELL\$ (2 levels)

MW-1S, MW-6B

Kruskal-Wallis One-Way Analysis of Variance for 96 cases

Dependent variable is VALUE

Grouping variable is WELL\$

Group Count Rank Sum

MW-1S 50 2524.500 MW-6B 46 2131.500

Mann-Whitney U test statistic = 1249.500

Probability is 0.382

Chi-square approximation = 0.763 with 1 df

The following results are for:

PARAM_ID\$ = EBN

Categorical values encountered during processing are:

WELL\$ (2 levels)

MW-1S, MW-6B

Kruskal-Wallis One-Way Analysis of Variance for 96 cases

Dependent variable is VALUE

Grouping variable is WELL\$

Group Count Rank Sum

MW-1S 50 2125.500 MW-6B 46 2530.500

Mann-Whitney U test statistic = 850.500

Probability is 0.016

Chi-square approximation = 5.803 with 1 df

The following results are for: PARAM_ID\$ = HCR

Categorical values encountered during processing are:

WELL\$ (2 levels) MW-1S, MW-6B

Kruskal-Wallis One-Way Analysis of Variance for 96 cases

Dependent variable is VALUE Grouping variable is WELL\$

Group Count Rank Sum

MW-1S 50 2492.500 MW-6B 46 2163.500

Mann-Whitney U test statistic = 1217.500

Probability is 0.521

Chi-square approximation = 0.413 with 1 df

The following results are for:

PARAM_ID\$ = TCE

Categorical values encountered during processing are:

WELL\$ (2 levels)

.

.

MW-1S, MW-6B

Kruskal-Wallis One-Way Analysis of Variance for 96 cases

Dependent variable is VALUE

Grouping variable is WELL\$

Group Count Rank Sum

MW-1S 50 2683.000 MW-6B 46 1973.000

Mann-Whitney U test statistic = 1408.000

Probability is 0.058

Chi-square approximation = 3.584 with 1 df

The following results are for:

PARAM_ID\$ = TCR

Categorical values encountered during processing are:

WELL\$ (2 levels)

MW-1S, MW-6B

Kruskal-Wallis One-Way Analysis of Variance for 96 cases

Dependent variable is VALUE

Grouping variable is WELL\$

Group Count Rank Sum

MW-1S 50 2216.000 MW-6B 46 2440.000

Mann-Whitney U test statistic = 941.000

Probability is 0.028

Chi-square approximation = 4.857 with 1 df

The following results are for:

 $PARAM_ID$ \$ = TOL

Categorical values encountered during processing are:

WELL\$ (2 levels)

MW-1S, MW-6B

Kruskal-Wallis One-Way Analysis of Variance for 94 cases

Appendix G Annual Groundwater Monitoring Report for 2001

This annual report summarizes the groundwater monitoring which was conducted during 2001 at the Phibro-Tech, Inc. facility, based on three rounds of sampling which occurred in April, July and October of 2001. Also included in this report are graphs with concentrations versus time for key compounds of concern at the facility.

G.1 Groundwater Elevation, Gradient, and Flow Direction

During each of the three sampling rounds, depth to groundwater was measured at 15 shallow wells and 7 deep wells at the facility (with the exception of MW-10 which was inaccessible during the October sampling event). Table 5-1 in each of the groundwater sampling reports from 2001 lists the depths to water and groundwater elevations for each well sampled.

During 2001, groundwater levels were lowest in October (shallow well elevations ranging from 105.21 to 107.54 feet above msl, and deep well elevations ranging from 105.08 to 107.39 feet above msl). The highest groundwater levels were recorded in July (shallow well elevations 109.76 to 111.58 feet above msl, and deep well elevations 109.62 to 111.61 feet above msl).

Groundwater gradients in the shallow wells during 2001 ranged from 0.35 foot per 100 feet (April) to 0.38 feet per 100 feet (October). In the deep wells, the groundwater gradients ranged from 0.26 foot per 100 feet (July) to 0.54 foot per 100 feet (October).

Direction of groundwater flow in the shallow wells during 2001 was consistently towards the southwest. The groundwater flow direction in the deep wells during 2001 was also consistently towards the southwest.

G.2 Groundwater Quality

Tables contained in Section 6 and Appendix B of the quarterly groundwater monitoring reports summarize current and historical concentrations of key contaminants of concern (total and hexavalent chromium, cadmium, copper, purgeable aromatic compounds, and trichloroethene), and groundwater elevations for each shallow groundwater monitoring well. Specific compounds of concern are discussed below with respect to groundwater monitoring in 2001.

Trichloroethene

As in previous years, trichloroethene (TCE) was the primary purgeable halogenated organic compound detected in 2001. It was detected in all 14 monitoring wells sampled during April, July and October. The highest concentration of TCE detected in 2001 was $1,700 \,\mu\text{g}/\text{L}$ in shallow well MW-11 during the April sampling event. The

highest concentration detected in the deep wells was $44 \mu g/L$ in MW-04A during the October sampling round. Historical TCE concentrations, including 2001 data, for each sampled shallow well are shown on the accompanying graphs.

Purgeable Aromatic Organic Compounds

Historical evidence indicates that benzene is not a contaminant of concern for the facility. During 2001 it was detected in MW-04 at a concentration of 2.1 μ g/L in April, MW-01D at a concentration of 1.5 μ g/L in October and MW-15D at a concentration of 2.2 μ g/L. The highest concentration of total BTEX compounds (benzene, toluene, ethylbenzene, and xylenes) detected in 2001 was 3,700 μ g/L in MW-04 during the October sampling event. Historical BTEX concentrations for each sampled shallow well are shown on the accompanying graphs.

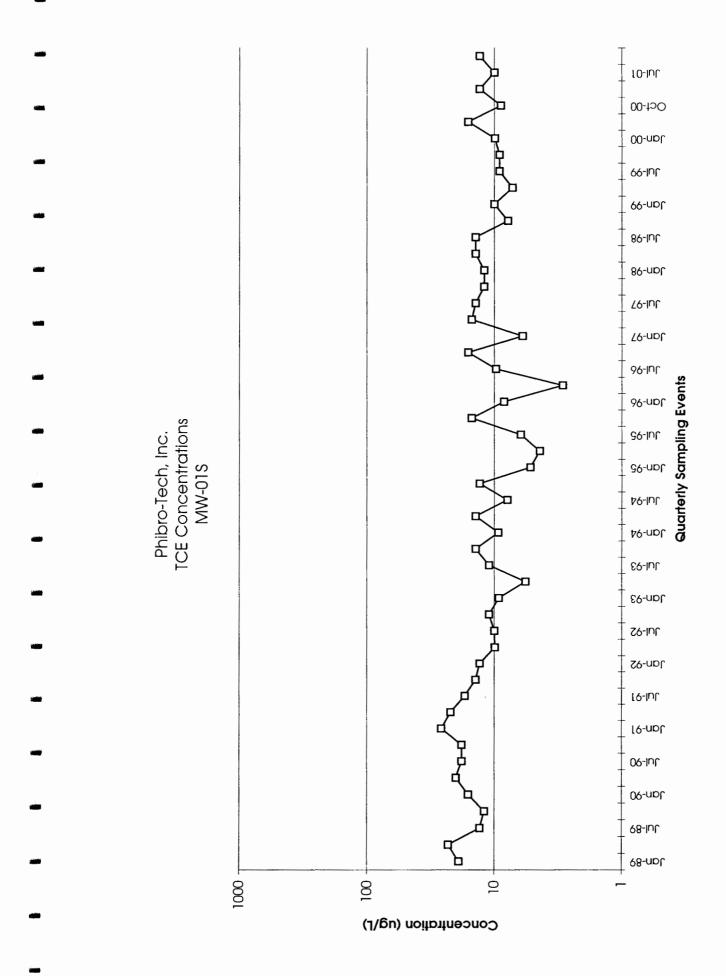
Total Chromium

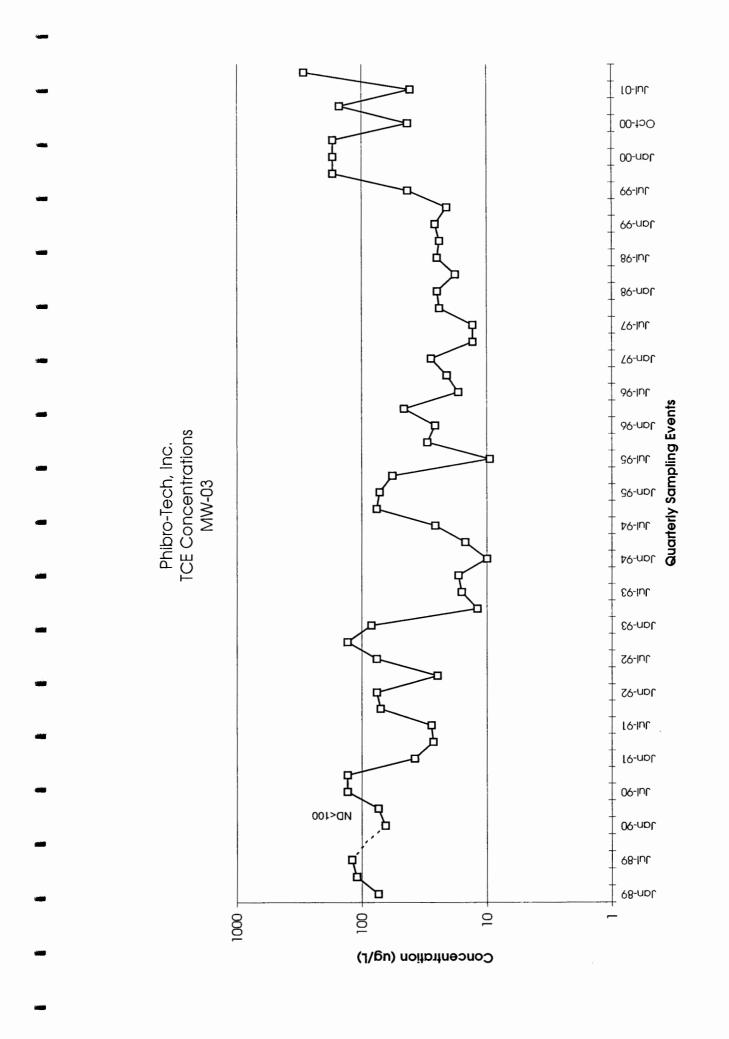
Chromium was detected in five wells during 2001, three of which had detections above the maximum contaminant level (MCL) of 0.05 mg/L. Total chromium concentrations that exceeded the MCL were reported in wells MW-04 (April, July and October), MW-09 (July and October) and MW-14S (October). The concentrations of total chromium in MW-04 ranged from 12.6 mg/L in July to 39.8 mg/L in October. The total chromium concentration in MW-09 ranged from 0.011 mg/L in April to 1.3 mg/L in October. The total chromium concentration in well MW-14S during October 2001 was 0.14 mg/L. Historical total chromium concentrations for each of the sampled shallow wells are shown on the accompanying graphs.

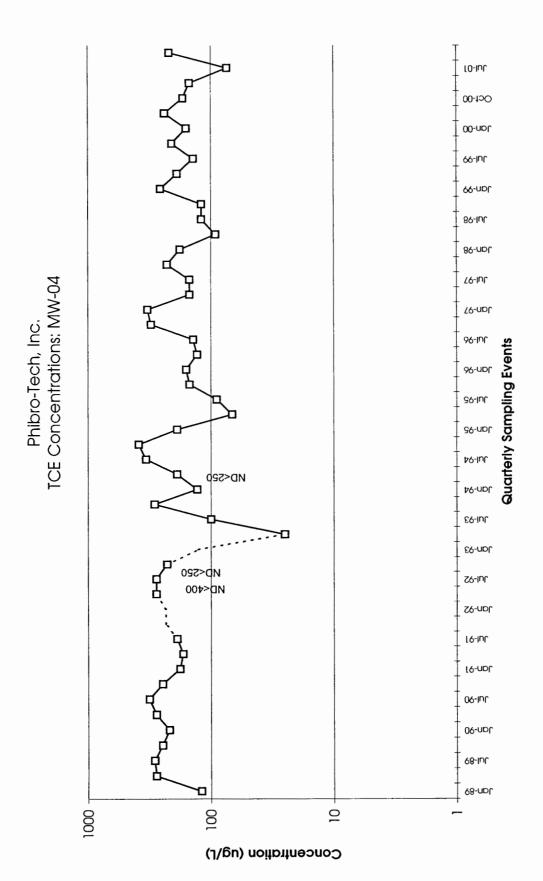
Hexavalent Chromium

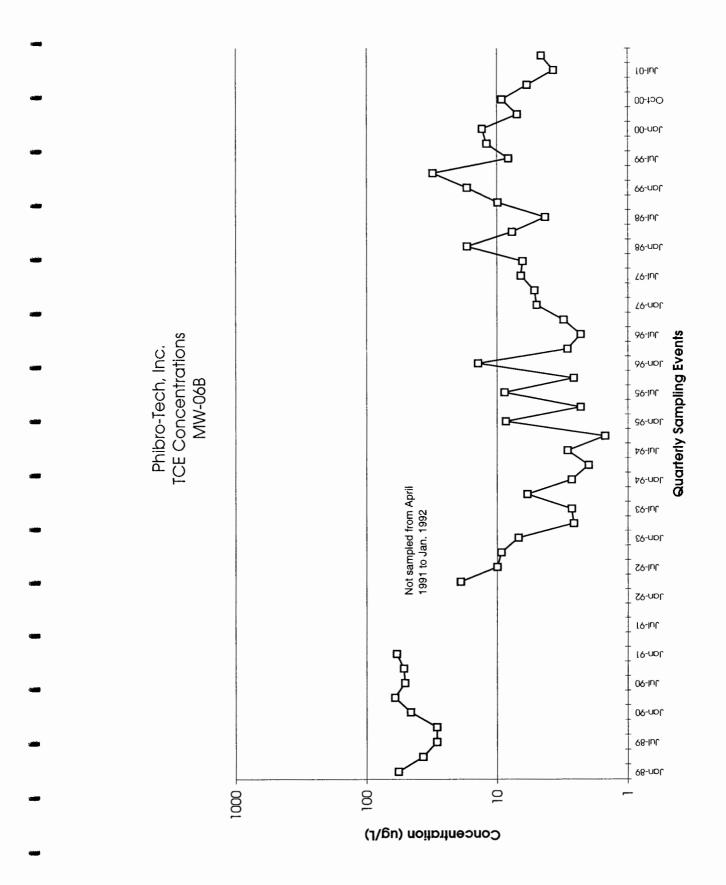
Hexavalent chromium was detected at a concentration above the reporting limit in 12 wells at least once during 2001. The highest levels were detected at the location of monitoring well MW-04. During 2001, hexavalent chromium was detected in MW-04 at concentrations ranging from 11 mg/L in April to 32 mg/L in October. The second highest concentration of hexavalent chromium was detected in well MW-09 at a concentration ranging from 0.0043 mg/L in April to 1.1 mg/L in October. Historical hexavalent chromium concentrations for wells MW-04, MW-07, MW-09, and MW-14S are shown on the accompanying graphs. All other wells at the facility have had non-detections with only sporadic, low concentrations of hexavalent chromium detected over time.

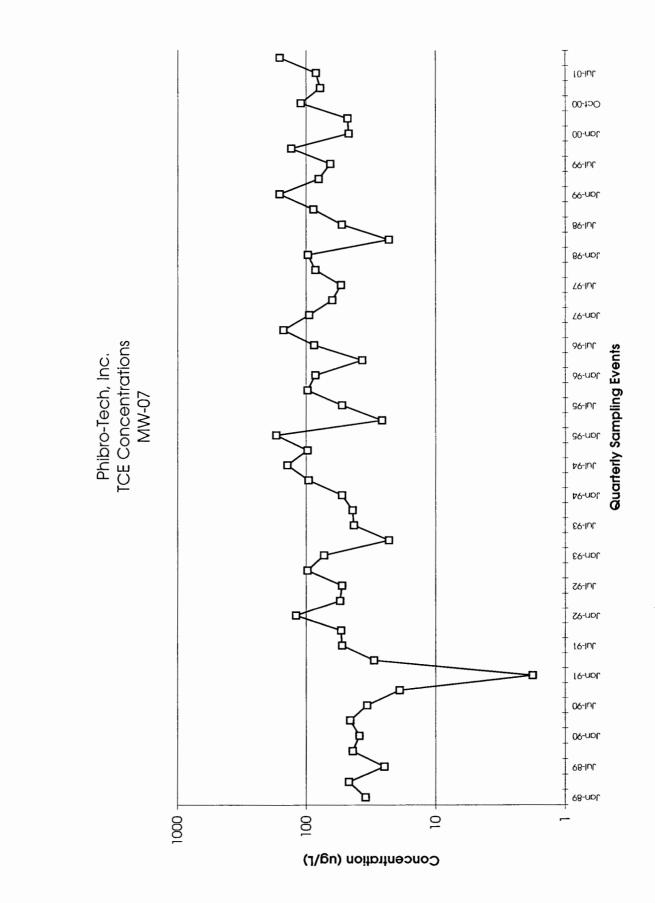
Cadmium

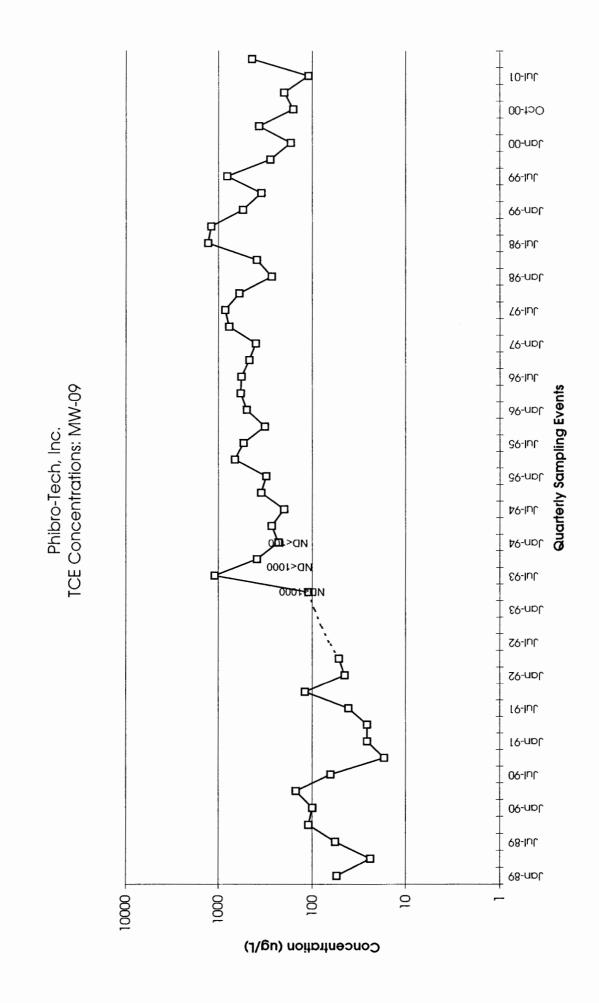

The only well which consistently has detections of cadmium is MW-04. During 2001, cadmium concentrations in MW-04 ranged from 0.32 mg/L in July to 0.44 mg/L in October. Historical cadmium concentrations for MW-04, MW-09, MW-14S, and MW-15S are shown on the accompanying graphs. Generally, all other wells at the facility have historically had only non-detections of cadmium.

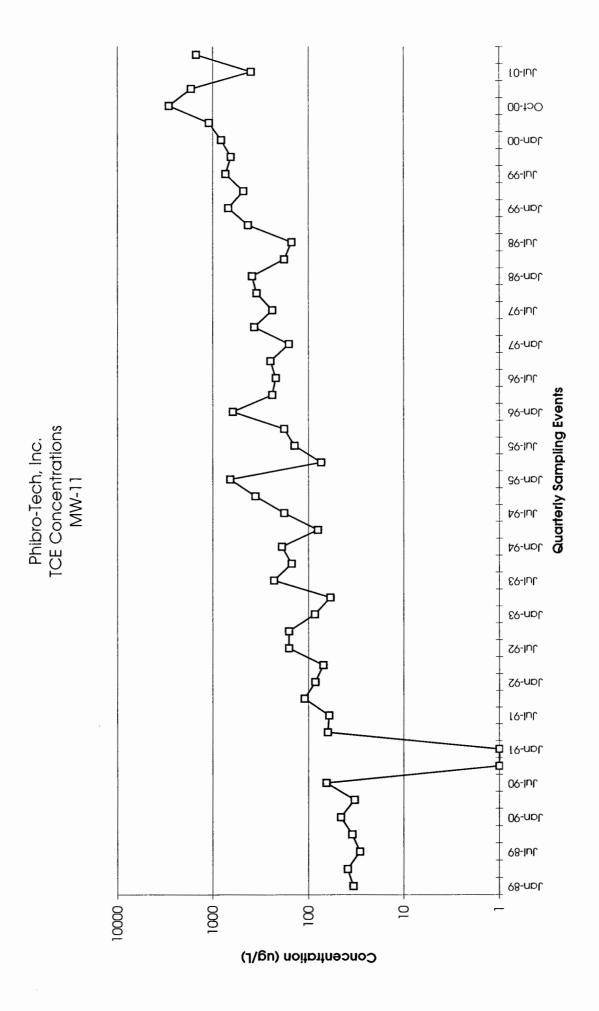


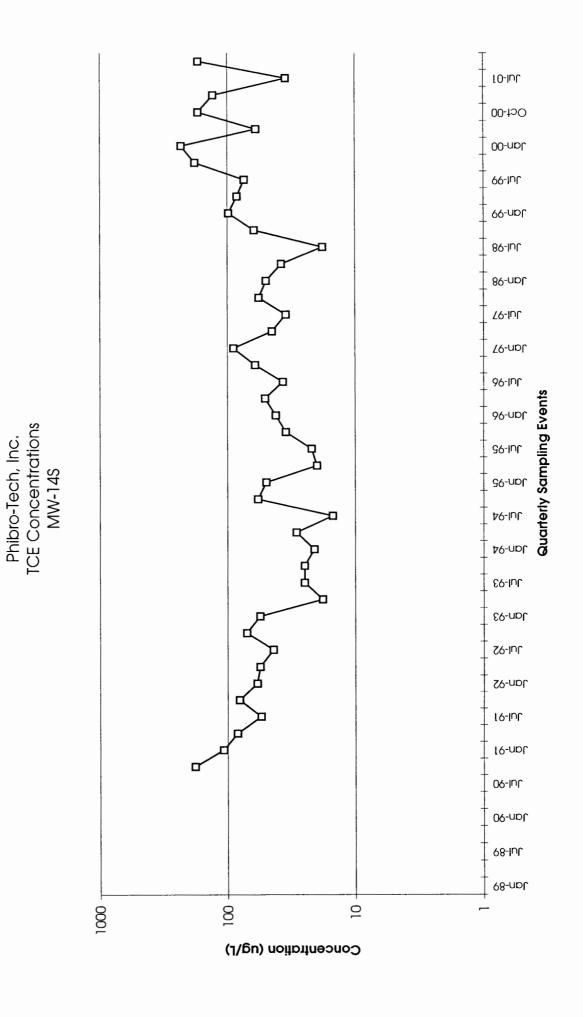

Copper

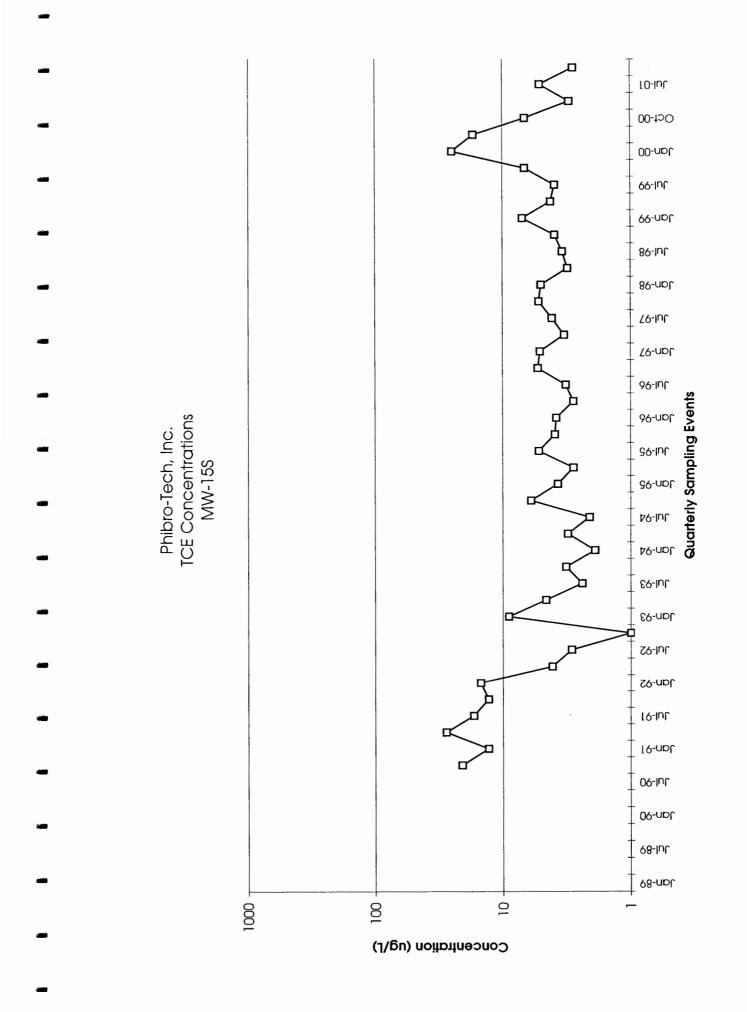

Copper was detected in two wells in 2001 with concentrations ranging from 0.030mg/L in MW-14S (April) to 0.073 mg/L in MW-07 (October). These concentrations are below the secondary MCL of 1.3 mg/L. Historically, copper has not been detected, or has been detected only occasionally in very low concentrations near the detection limit of 0.025 mg/L.

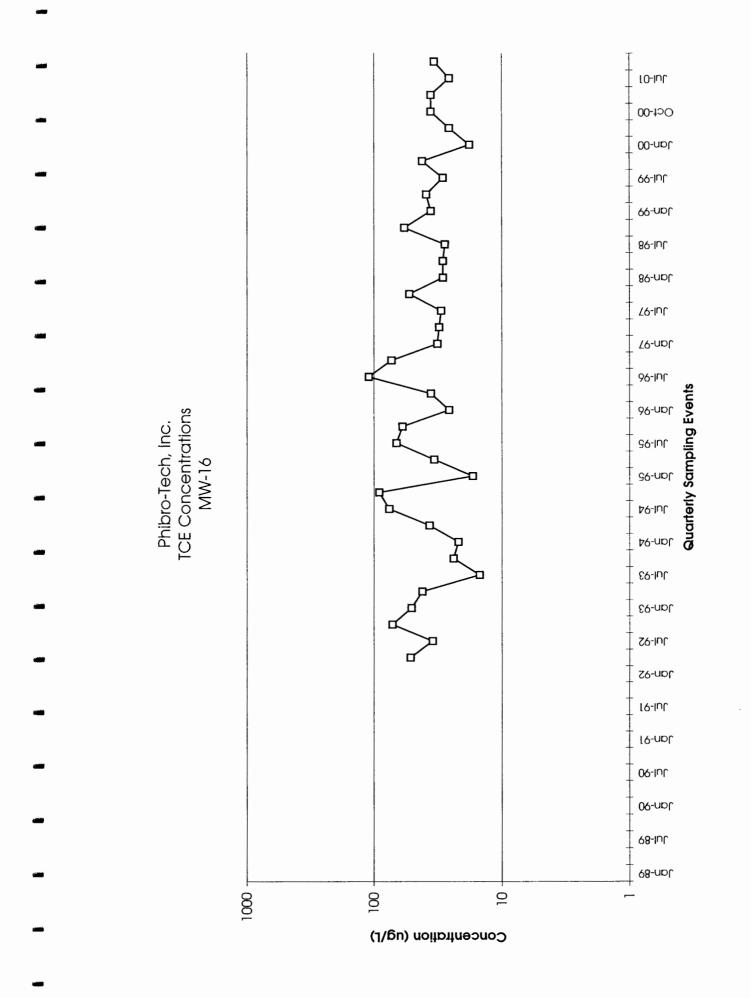


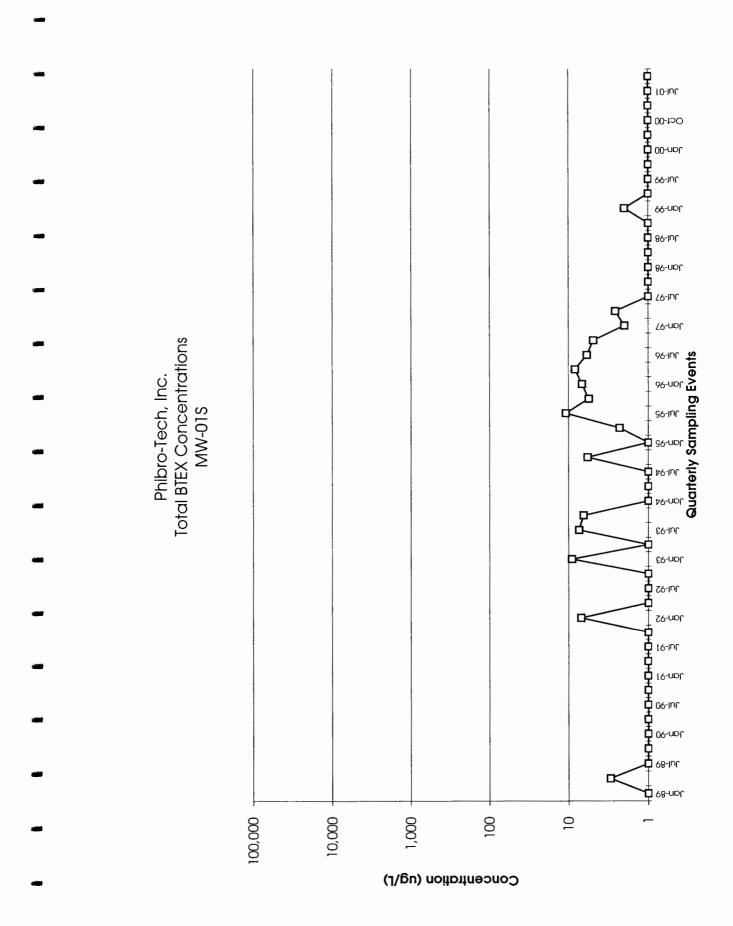












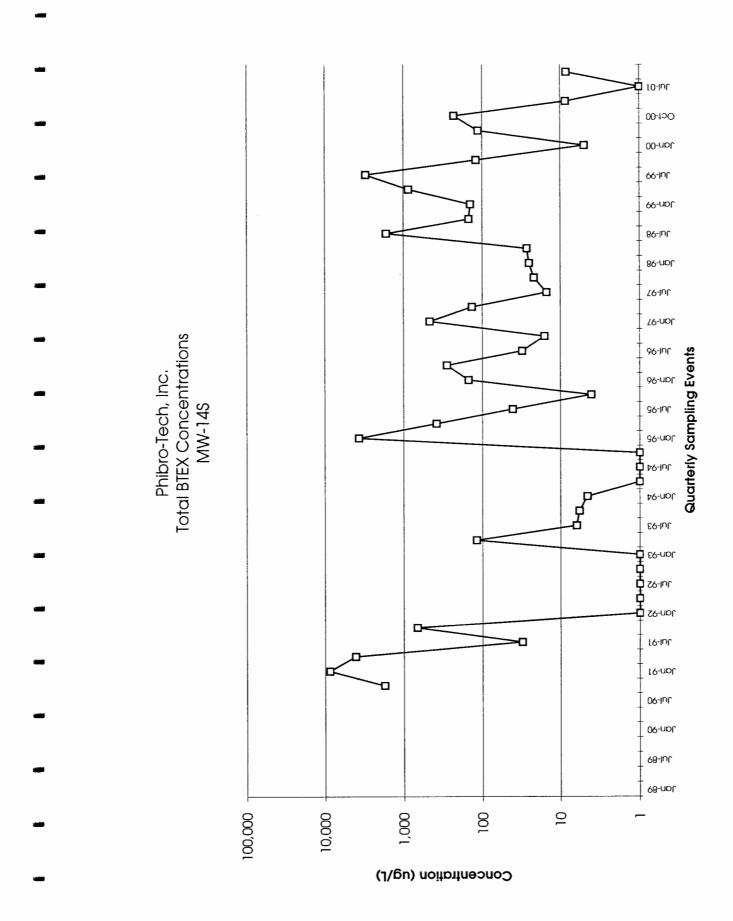
Tce14s.xl

Ce15s.xlc

Ů 10-Jut Oct-00 1au-00 66-Inr 1au-33 89-iul 1an-98 79-IUL 1au-97 Phibro-Tech, Inc. Total BTEX Concentrations MW-03 Quarterly Sampling Events 59-lul 1au-83 \$ 76-In 1an-92 후 16-Im 모 1au-61 09-lul 1au-90 98-IJL 98-nol 100,000 10,000 9 1,000 2 Concentration (ug/L)

10-Inc 00-toO Jan-00 66-Inc 100-66 89-Jul 1an-98 79-**յ**որ 1an-97 Phibro-Tech, Inc. Total BTEX Concentrations MW-04 **Quarterly Sampling Events** 99-IUL 96-UDJ 36-Jnr Jan-95 101-94 194-ndl 69-Iul 1au-83 26-IUC Jan-92 19-100 19-npl 06-IUL 1au-30 98-I**v**L 98-ndl 9 90 100,000 10,000 1,000 Concentration (ug/L)

1au-00 99-IJL 1au-33 89-IJL 1au-38 5 79-10L 1au-6) Phibro-Tech, Inc. Total BTEX Concentrations MW-06B 96-INC **Quarterly Sampling Events** 7au-86 26-IUC 1an-95 101-94 56-IJL ₫ 66-nbl 1au-92 19-10 10-nov 09-IUL 98-not 08-lut 08-not 100,000 10,000 1,000 9 2 Concentration (ug/L)

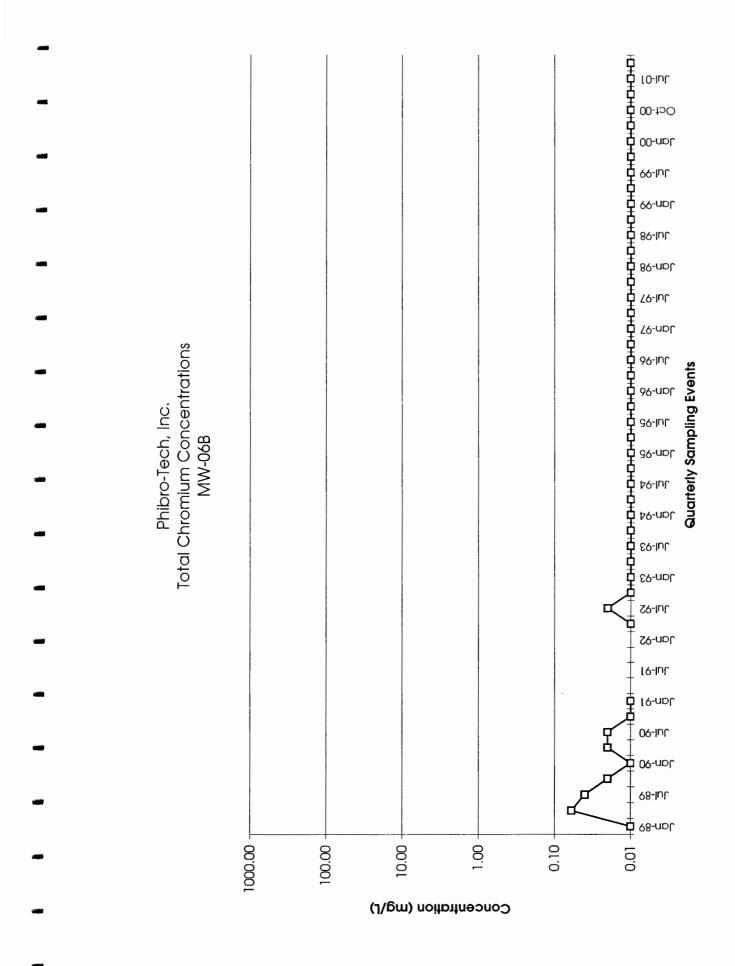

10-lut 00-toO 1au-00 99-1UL 1an-99 86-lut 98-nbl 1an-97 Phibro-Tech, Inc. Total BTEX Concentrations MW-07 96-Inr **Quarterly Sampling Events** 1au-36 36-100 1au-82 101-94 SQ-IUL 1au-83 🗖 26-IUC 64-nor 16-nor 16-nor 28-nor 1au-30 **⊉** 98-}⊔∟ 1au-83 100,000 10,000 1,000 9 2 Concentration (ug/L)

10-101 00-toO Jau-00 99-Jul 10n-99 89-IJL 199-Jan-98 79-lul 1au-83 Phibro-Tech, Inc. Total BTEX Concentrations 96-Inc **Quarterly Sampling Events** 1au-89 90-WM JUI-95 1au-82 101-94 1au-64 59-Iul Jan-93 701-65 Jan-92 [6-JUL 16-UDC 06-lul 1an-90 68-not 100,000 10,000 1,000 9 9 Concentration (ug/L)

Btex09.xl

10-inc Oct-00 1au-00 66-Inf 1an-99 89-IJL 1an-98 79-IUL 1au-97 Phibro-Tech, Inc. Total BTEX Concentrations MW-11 Aurierly Sampling Events 56-100 1au-83 **S9-IU** Jau-92 16-100 Jau-91 06-Iul 1an-90 98-lut 1an-89 100,000 10,000 1,000 8 9

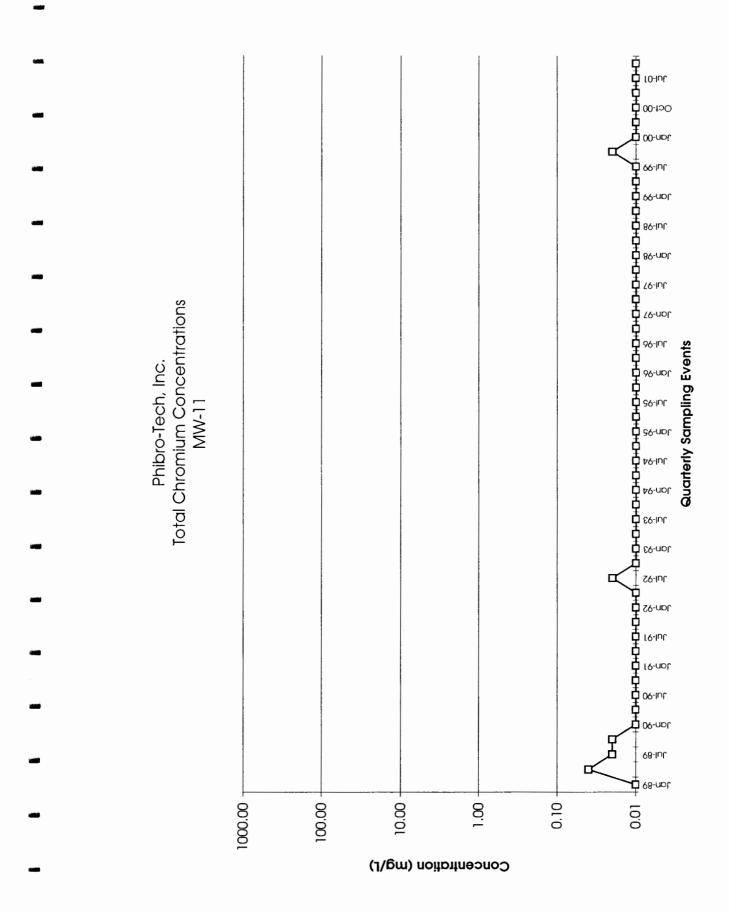
Concentration (ug/L)


₹ 10-lut 00-15O Jau-00 99-IUL 1au-33 89-IJL 1au-98 79-lul 1an-97 Phibro-Tech, Inc. Total BTEX Concentrations MW-15S 96-INC **Quarterly Sampling Events** 96-UDJ 36-Inc 1an-95 40-not 59-IJL **₽** 66-UD1 F 19-10L 16-UDC 06-lul Jan-90 98-IJL 98-npl 100,000 10,000 1,000 9 10 Concentration (ug/L)

10-Inr 00-toO 1au-00 🛱 99-IUL 1an-99 89-Jul 1an-98 76-IUL 1an-97 Phibro-Tech, Inc. Total BTEX Concentrations MW-16 96-Inc **Quarterly Sampling Events** 1an-96 36-IN JUI-94 1an-94 59-lul 100-93 🛱 JUI-92 🗗 1au-85 19-jur 1au-81 06-Inf 1au-30 98-Iul 1an-89 100,000 10,000 1,000 9 2 Concentration (ug/L)

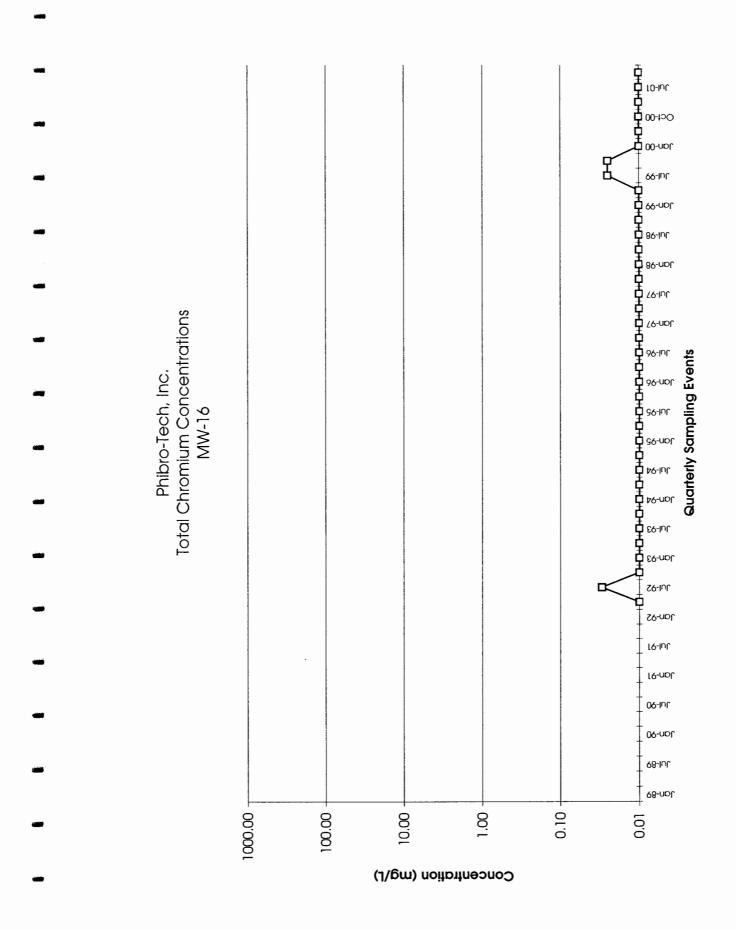
Total Chromium Concentrations MW-01S **Quarterly Sampling Events** Phibro-Tech, Inc. 106-10r Jav-90 🛱 98-IJL 100.00 10.00 1.00 0.01 1000.00 Concentration (mg/L)

Total Chromium Concentrations MW-03 **Quarterly Sampling Events** Phibro-Tech, Inc. 26-IUL 08-not 18-not 18-not 28-not 1an-90 🕇 98-IJL 100.00 0.10 10.00 90. 0.01 1000.00 Concentration (mg/L)


ro-juc Oct-00 1au-00 99-jul 1au-33 89-lul 1an-98 76-IUL Total Chromium Concentrations MW-04 1an-97 96-IUL **Quarterly Sampling Events** Phibro-Tech, Inc. 1au-86 26-INC 1au-95 101-94 1an-94 59-Iul Jan-93 701-65 Jan-92 16-17 Jau-91 06-lul 1au-30 98-Iul 1au-89 100.001 0.10 9. 10.00 0.01 1000.00 Concentration (mg/L)

Jan-00-101-01 66-Inc 3%-not 3% Total Chromium Concentrations MW-07 **Quarterly Sampling Events** Phibro-Tech, Inc. 58-10. 59-10. 59-10. 59-10. 58-10. 1an-93 101-95 1au-80 🛱 98-I_UL 78-nor 100.00 10.00 0.10 1.00 1000.00 0.01 Concentration (mg/L)

10-Inc 00-toO 1au-00 66-Inc Jan-99 # 86-nor # 86-nor Total Chromium Concentrations MW-09 **Quarterly Sampling Events** Phibro-Tech, Inc. 1an-93 1au-35 101-01 06-Inf 1au-30 98-lut 1an-89 100.00 0.10 1000.00 10.00 90. 0.01 Concentration (mg/L)


Tchrom09.xlc

10-Inr 00-toO 1au-00 66-Inr 1au-66 J 86-IUL 10n-98 79-IUL Total Chromium Concentrations MW-14S 1an-97 96-Inc **Quarterly Sampling Events** Phibro-Tech, Inc. 1au-96 **₽** 56-Inc 176-IUC 10n-94 56-Inr 1au-93 Jul-92 Jan-92 16-17 1au-91 06-Inc 1an-90 98-lul 1au-89 100.00 10.00 0.0 0.10 0.01 1000.00 Concentration (mg/L)

1au-00 🛱 rn-‰ 🛱 89-lul 10-70-100 Total Chromium Concentrations MW-15S **Quarterly Sampling Events** Phibro-Tech, Inc. 1au-96 ₽ 198-luc 190-95 \$69-IUL 1an-93 Jui-92 16-no. 06-IUL 1an-90 98-IUL 1an-89 100.00 10.00 9. 0.10 1000.00 0.01 Concentration (mg/L)

Tchro15s.xlc

ro-Inc Oct-00 1an-00 66-Inc 1au-99 86-Inc 98-npL Hexavalent Chromium Concentrations MW-04 79-jul 19-Apl 96-INC **Quarterly Sampling Events** Phibro-Tech, Inc. 1au-96 39-IUL 1an-95 101-94 1an-94 56-101 1an-93 Jul-92 1au-92 16-100 1au-91 06-inc 1an-90 98-IJL 1an-89 100,00 10.00 1.0 0.10 1000.00 0.01 Concentration (mg/L)

00-toO 00-up(66-INC 1au-66 ^ 86-Jul 1an-98 Hexavalent Chromium Concentrations MW-07 70-JUL 79-ADL 96-Inc **Quarterly Sampling Events** Phibro-Tech, Inc. NOTE: All values are non-detections (ND) except for Jan-92 96-UDJ 26-INC 49-IUL 10n-94 £6-Inc 1an-93 70-lnr Jan-92 19-100 1au-8j 06-Inr 1au-30 98-lut 100.00 10.00 1.00 0.10 0.01 1000.00 Concentration (mg/L)

1an-99 89-IJL 1au-98 |<<----->>| Hexavalent Chromium Concentrations MW-09 79-IUL Jau-97 96-IUL **Quarterly Sampling Events** Phibro-Tech, Inc. 190-96 29-IUL 149-IUL 194-nbl 56-IUL Jan-93 JUI-92 Jan-92 2 16-17 1au-6J 04-Iul 1an-90 98-IuL 1au-89 100.00 10.00 9. 0.10 1000.00 0.01

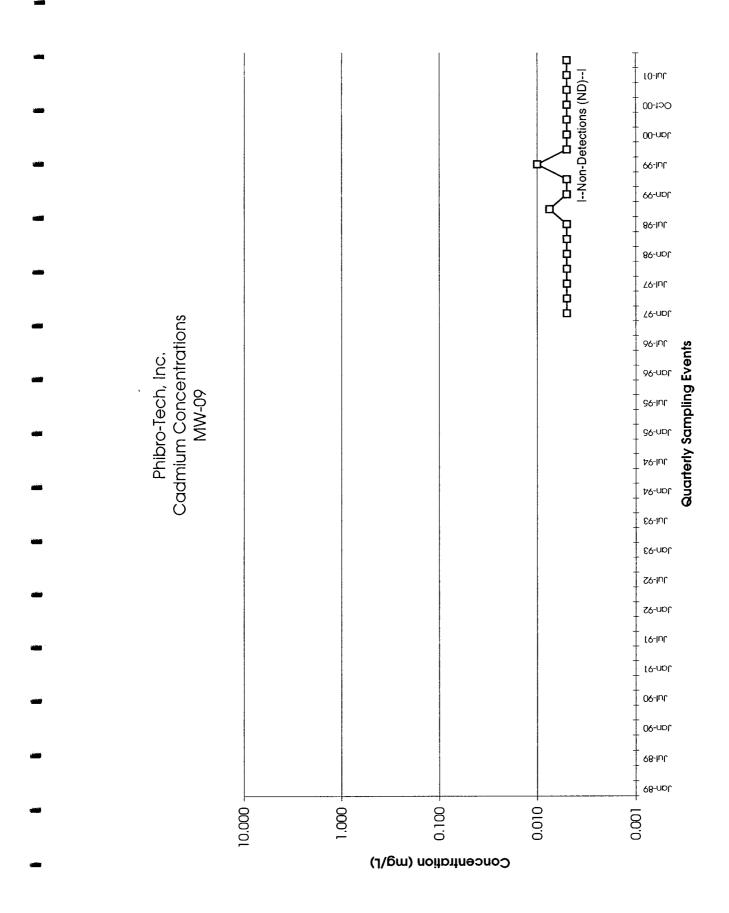
Concentration (mg/L)

10-100

00-toO

1au-00

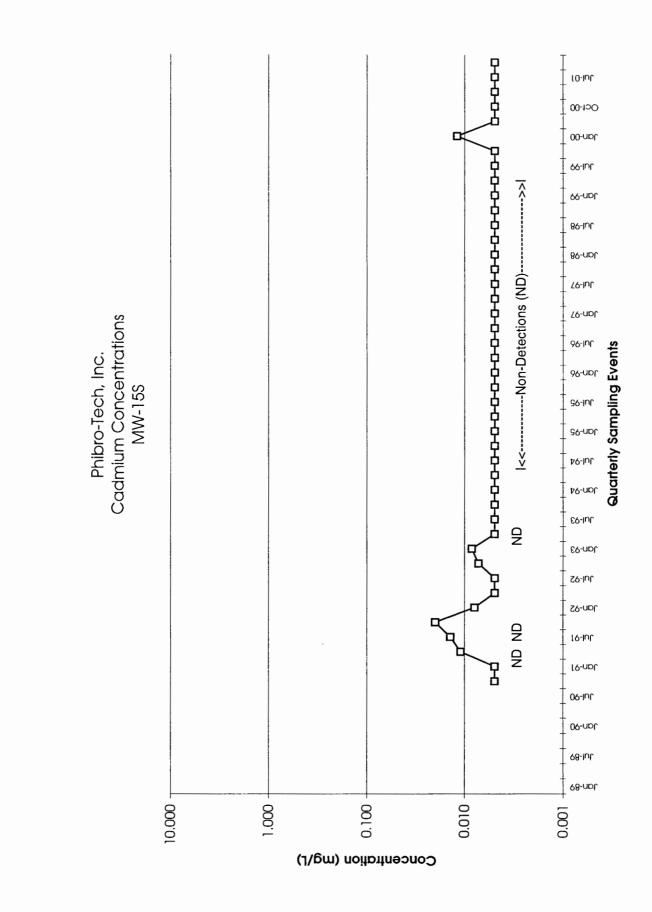
99-Jul


₽ 10-IUL 00-toO 1au-00 99-IUL 1an-99 89-Jul 1au-98 Hexavalent Chromium Concentrations MW-148 79-IJL 1au-6) **Quarterly Sampling Events** Phibro-Tech, Inc. 96-UDC 96-Inn gau-82 176-INC 1au-94 59-IJL 1an-93 Jul-92 1au-85 10401 Jau-91 06-Inr 1au-30 1au-89 100.00 10.00 0.10 1.0 0.01 Concentration (mg/L)

1an-00 66-Inc 1an-99 89-Jul Jan-98 79-IJ 1an-97 Cadmium Concentrations MW-04 96-INC **Quarterly Sampling Events** Phibro-Tech, Inc. 1au-96 JUI-95 1au-95 17I-94 2 1au-94 101-93 10n-93 101-95 1an-92 16-101 10-UDJ 06-Inc 1an-90 98-Jul 0.010 -10.000 000 0.100 0.001

Concentration (mg/L)

ro-Inc


00-toO

10-lu 00-toO 1au-00 99-IUL 1au-33 89-lul 1an-98 70-100 јаи-83 Cadmium Concentrations MW-14S Auror-94

Quarterly Sampling Events

60-101-95 Phibro-Tech, Inc. 59-100 1au-83 101-92 1au-85 10-lnr Jan-91 06-IUL Jan-90 98-lul 1au-88 10.000 0.010 000. 0.100 0.001 Concentration (mg/L)

